IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v141y2025ics0140988324008211.html
   My bibliography  Save this article

Do global COVOL and geopolitical risks affect clean energy prices? Evidence from explainable artificial intelligence models

Author

Listed:
  • Ben Jabeur, Sami
  • Bakkar, Yassine
  • Cepni, Oguzhan

Abstract

We investigate the impact of global common volatility and geopolitical risks on clean energy prices. Our study utilizes daily data from January 1, 2001, to March 18, 2024. Using a new framework based on explainable artificial intelligence (XAI) methods, our findings demonstrate that the COVOL index outperforms the geopolitical risk index in accurately predicting clean energy prices. Furthermore, the Extreme Trees algorithm shows superior performance compared to traditional regression techniques. Our findings indicate that XAI improves transparency, thereby making a substantial contribution to agile decision-making in predicting clean energy prices. Practitioners, including investors and portfolio managers, can enhance investment decisions and manage systemic risks by incorporating COVOL into their risk assessment and asset allocation models.

Suggested Citation

  • Ben Jabeur, Sami & Bakkar, Yassine & Cepni, Oguzhan, 2025. "Do global COVOL and geopolitical risks affect clean energy prices? Evidence from explainable artificial intelligence models," Energy Economics, Elsevier, vol. 141(C).
  • Handle: RePEc:eee:eneeco:v:141:y:2025:i:c:s0140988324008211
    DOI: 10.1016/j.eneco.2024.108112
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988324008211
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2024.108112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mehmet Balcilar, David Roubaud, and Muhammad Shahbaz, 2019. "The Impact of Energy Market Uncertainty Shocks on Energy Transition in Europe," The Energy Journal, International Association for Energy Economics, vol. 0(The New E).
    2. Pata, Ugur Korkut & Alola, Andrew Adewale & Erdogan, Sinan & Kartal, Mustafa Tevfik, 2023. "The influence of income, economic policy uncertainty, geopolitical risk, and urbanization on renewable energy investments in G7 countries," Energy Economics, Elsevier, vol. 128(C).
    3. Klein, Tony, 2024. "Investor behavior in times of conflict: A natural experiment on the interplay of geopolitical risk and defense stocks," Journal of Economic Behavior & Organization, Elsevier, vol. 222(C), pages 294-313.
    4. Sun, Xiaolei & Liu, Mingxi & Sima, Zeqian, 2020. "A novel cryptocurrency price trend forecasting model based on LightGBM," Finance Research Letters, Elsevier, vol. 32(C).
    5. Sweidan, Osama D., 2021. "Is the geopolitical risk an incentive or obstacle to renewable energy deployment? Evidence from a panel analysis," Renewable Energy, Elsevier, vol. 178(C), pages 377-384.
    6. Tan, Xueping & Geng, Yong & Vivian, Andrew & Wang, Xinyu, 2021. "Measuring risk spillovers between oil and clean energy stocks: Evidence from a systematic framework," Resources Policy, Elsevier, vol. 74(C).
    7. Wen, Fenghua & Cao, Jiahui & Liu, Zhen & Wang, Xiong, 2021. "Dynamic volatility spillovers and investment strategies between the Chinese stock market and commodity markets," International Review of Financial Analysis, Elsevier, vol. 76(C).
    8. Lang, Chunlin & Hu, Yang & Goodell, John W. & Hou, Yang (Greg), 2024. "Connectedness and co-movement between dirty energy, clean energy and global COVOL," Finance Research Letters, Elsevier, vol. 63(C).
    9. Xu Gong & Mengjie Li & Keqin Guan & Chuanwang Sun, 2023. "Climate change attention and carbon futures return prediction," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(9), pages 1261-1288, September.
    10. Dario Caldara & Matteo Iacoviello, 2022. "Measuring Geopolitical Risk," American Economic Review, American Economic Association, vol. 112(4), pages 1194-1225, April.
    11. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    12. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    13. Evangelos Kyritsis & Apostolos Serletis, 2019. "Oil Prices and the Renewable Energy Sector," The Energy Journal, , vol. 40(1_suppl), pages 337-364, June.
    14. Lewis, Joanna I. & Wiser, Ryan H., 2007. "Fostering a renewable energy technology industry: An international comparison of wind industry policy support mechanisms," Energy Policy, Elsevier, vol. 35(3), pages 1844-1857, March.
    15. Stef, Nicolae & Başağaoğlu, Hakan & Chakraborty, Debaditya & Ben Jabeur, Sami, 2023. "Does institutional quality affect CO2 emissions? Evidence from explainable artificial intelligence models," Energy Economics, Elsevier, vol. 124(C).
    16. Henriques, Irene & Sadorsky, Perry, 2008. "Oil prices and the stock prices of alternative energy companies," Energy Economics, Elsevier, vol. 30(3), pages 998-1010, May.
    17. Costa, Alexandre Bonnet R. & Ferreira, Pedro Cavalcanti G. & Gaglianone, Wagner P. & Guillén, Osmani Teixeira C. & Issler, João Victor & Lin, Yihao, 2021. "Machine learning and oil price point and density forecasting," Energy Economics, Elsevier, vol. 102(C).
    18. Dutta, Anupam & Dutta, Probal, 2022. "Geopolitical risk and renewable energy asset prices: Implications for sustainable development," Renewable Energy, Elsevier, vol. 196(C), pages 518-525.
    19. Zhang, Chunhong & Khan, Irfan & Dagar, Vishal & Saeed, Asif & Zafar, Muhammad Wasif, 2022. "Environmental impact of information and communication technology: Unveiling the role of education in developing countries," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    20. Sami Ben Jabeur & Rabeh Khalfaoui & Wissal Ben Arfi, 2021. "The effect of green energy, global environmental indexes, and stock markets in predicting oil price crashes: Evidence from explainable machine learning," Post-Print hal-03797577, HAL.
    21. Batten, Jonathan A. & Kinateder, Harald & Szilagyi, Peter G. & Wagner, Niklas F., 2021. "Hedging stocks with oil," Energy Economics, Elsevier, vol. 93(C).
    22. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    23. Su, Chi-Wei & Khan, Khalid & Umar, Muhammad & Zhang, Weike, 2021. "Does renewable energy redefine geopolitical risks?," Energy Policy, Elsevier, vol. 158(C).
    24. Jabeur, Sami Ben & Ballouk, Houssein & Mefteh-Wali, Salma & Omri, Anis, 2022. "Forecasting the macrolevel determinants of entrepreneurial opportunities using artificial intelligence models," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    25. Chen, Zhuoyi & Liu, Yuanyuan & Zhang, Hongwei, 2024. "Can geopolitical risks impact the long-run correlation between crude oil and clean energy markets? Evidence from a regime-switching analysis," Renewable Energy, Elsevier, vol. 229(C).
    26. Rabeh Khalfaoui & Sami Ben Jabeur & Shawkat Hammoudeh & Wissal Ben Arfi, 2022. "The role of political risk, uncertainty, and crude oil in predicting stock markets: evidence from the UAE economy," Post-Print hal-03804993, HAL.
    27. Athey, Susan & Imbens, Guido W., 2019. "Machine Learning Methods Economists Should Know About," Research Papers 3776, Stanford University, Graduate School of Business.
    28. Hachicha, Néjib & Ben Amar, Amine & Ben Slimane, Ikrame & Bellalah, Makram & Prigent, Jean-Luc, 2022. "Dynamic connectedness and optimal hedging strategy among commodities and financial indices," International Review of Financial Analysis, Elsevier, vol. 83(C).
    29. Hoang Hiep Nguyen & Jean-Laurent Viviani & Sami Ben Jabeur, 2023. "Bankruptcy prediction using machine learning and Shapley additive explanations," Post-Print hal-04223161, HAL.
    30. Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
    31. Ji, Xiangfeng & Chen, Xueqi & Mirza, Nawazish & Umar, Muhammad, 2021. "Sustainable energy goals and investment premium: Evidence from renewable and conventional equity mutual funds in the Euro zone," Resources Policy, Elsevier, vol. 74(C).
    32. Peng, Qiao & Bakkar, Yassine & Wu, Liangpeng & Liu, Weilong & Kou, Ruibing & Liu, Kailong, 2024. "Transportation resilience under Covid-19 Uncertainty: A traffic severity analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    33. Lee, Ji Hyung & Shi, Zhentao & Gao, Zhan, 2022. "On LASSO for predictive regression," Journal of Econometrics, Elsevier, vol. 229(2), pages 322-349.
    34. Zhao, Zuoxiang & Gozgor, Giray & Lau, Marco Chi Keung & Mahalik, Mantu Kumar & Patel, Gupteswar & Khalfaoui, Rabeh, 2023. "The impact of geopolitical risks on renewable energy demand in OECD countries," Energy Economics, Elsevier, vol. 122(C).
    35. Goodell, John W. & Ben Jabeur, Sami & Saâdaoui, Foued & Nasir, Muhammad Ali, 2023. "Explainable artificial intelligence modeling to forecast bitcoin prices," International Review of Financial Analysis, Elsevier, vol. 88(C).
    36. Sami Ben Jabeur & Salma Mefteh-Wali & Jean-Laurent Viviani, 2024. "Forecasting gold price with the XGBoost algorithm and SHAP interaction values," Annals of Operations Research, Springer, vol. 334(1), pages 679-699, March.
    37. Huang, Chuangxia & Deng, Yunke & Yang, Xiaoguang & Cao, Jinde & Yang, Xin, 2021. "A network perspective of comovement and structural change: Evidence from the Chinese stock market," International Review of Financial Analysis, Elsevier, vol. 76(C).
    38. Lang, Chunlin & Xu, Danyang & Corbet, Shaen & Hu, Yang & Goodell, John W., 2024. "Global financial risk and market connectedness: An empirical analysis of COVOL and major financial markets," International Review of Financial Analysis, Elsevier, vol. 93(C).
    39. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
    40. Chen, Xia & Fu, Qiang & Chang, Chun-Ping, 2021. "What are the shocks of climate change on clean energy investment: A diversified exploration," Energy Economics, Elsevier, vol. 95(C).
    41. Fahmy, Hany, 2022. "The rise in investors’ awareness of climate risks after the Paris Agreement and the clean energy-oil-technology prices nexus," Energy Economics, Elsevier, vol. 106(C).
    42. Umar, Muhammad & Riaz, Yasir & Yousaf, Imran, 2022. "Impact of Russian-Ukraine war on clean energy, conventional energy, and metal markets: Evidence from event study approach," Resources Policy, Elsevier, vol. 79(C).
    43. Song, Yuegang & Zhang, Xiaoyu & Hu, Guoheng, 2023. "Relationships among geopolitical risk, trade policy uncertainty, and crude oil import prices: Evidence from China," Resources Policy, Elsevier, vol. 82(C).
    44. Xu, Danyang & Hu, Yang & Corbet, Shaen & Goodell, John W., 2023. "Volatility connectedness between global COVOL and major international volatility indices," Finance Research Letters, Elsevier, vol. 56(C).
    45. Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
    46. Hao, Xianfeng & Zhao, Yuyang & Wang, Yudong, 2020. "Forecasting the real prices of crude oil using robust regression models with regularization constraints," Energy Economics, Elsevier, vol. 86(C).
    47. Nguyen, Thi Thu Ha & Naeem, Muhammad Abubakr & Balli, Faruk & Balli, Hatice Ozer & Vo, Xuan Vinh, 2021. "Time-frequency comovement among green bonds, stocks, commodities, clean energy, and conventional bonds," Finance Research Letters, Elsevier, vol. 40(C).
    48. Shelby R. Buckman & Adam Hale Shapiro & Moritz Sudhof & Daniel J. Wilson, 2020. "News Sentiment in the Time of COVID-19," FRBSF Economic Letter, Federal Reserve Bank of San Francisco, vol. 2020(08), pages 1-05, April.
    49. Dutta, Anupam & Park, Donghyun & Uddin, Gazi Salah & Kanjilal, Kakali & Ghosh, Sajal, 2024. "Do dirty and clean energy investments react to infectious disease-induced uncertainty?," Technological Forecasting and Social Change, Elsevier, vol. 205(C).
    50. De Bock, Koen W. & Coussement, Kristof & Caigny, Arno De & Słowiński, Roman & Baesens, Bart & Boute, Robert N. & Choi, Tsan-Ming & Delen, Dursun & Kraus, Mathias & Lessmann, Stefan & Maldonado, Sebast, 2024. "Explainable AI for Operational Research: A defining framework, methods, applications, and a research agenda," European Journal of Operational Research, Elsevier, vol. 317(2), pages 249-272.
    51. Saâdaoui, Foued & Ben Jabeur, Sami, 2023. "Analyzing the influence of geopolitical risks on European power prices using a multiresolution causal neural network," Energy Economics, Elsevier, vol. 124(C).
    52. Asadi, Mehrad & Roubaud, David & Tiwari, Aviral Kumar, 2022. "Volatility spillovers amid crude oil, natural gas, coal, stock, and currency markets in the US and China based on time and frequency domain connectedness," Energy Economics, Elsevier, vol. 109(C).
    53. Dong, Chunlong & Wu, Hao & Zhou, Jianwen & Lin, Huifang & Chang, Lei, 2023. "Role of renewable energy investment and geopolitical risk in green finance development: Empirical evidence from BRICS countries," Renewable Energy, Elsevier, vol. 207(C), pages 234-241.
    54. Engle, Robert F. & Campos-Martins, Susana, 2023. "What are the events that shake our world? Measuring and hedging global COVOL," Journal of Financial Economics, Elsevier, vol. 147(1), pages 221-242.
    55. Ahmad, Wasim & Sadorsky, Perry & Sharma, Amit, 2018. "Optimal hedge ratios for clean energy equities," Economic Modelling, Elsevier, vol. 72(C), pages 278-295.
    56. Gong, Xu & Xu, Jun, 2022. "Geopolitical risk and dynamic connectedness between commodity markets," Energy Economics, Elsevier, vol. 110(C).
    57. Dutta, Anupam & Uddin, Gazi Salah & Sheng, Lin Wen & Park, Donghyun & Zhu, Xuening, 2024. "Volatility dynamics of agricultural futures markets under uncertainties," Energy Economics, Elsevier, vol. 136(C).
    58. Aysan, Ahmet Faruk & Bakkar, Yassine & Ul-Durar, Shajara & Kayani, Umar Nawaz, 2023. "Natural resources governance and conflicts: Retrospective analysis," Resources Policy, Elsevier, vol. 85(PA).
    59. Lyócsa, Štefan & Todorova, Neda, 2024. "Forecasting of clean energy market volatility: The role of oil and the technology sector," Energy Economics, Elsevier, vol. 132(C).
    60. Herrera, Gabriel Paes & Constantino, Michel & Su, Jen-Je & Naranpanawa, Athula, 2022. "Renewable energy stocks forecast using Twitter investor sentiment and deep learning," Energy Economics, Elsevier, vol. 114(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ben Cheikh, Nidhaleddine & Ben Zaied, Younes, 2024. "Does geopolitical uncertainty matter for the diffusion of clean energy?," Energy Economics, Elsevier, vol. 132(C).
    2. Ren, Xiaohang & Yang, Wanping & Jin, Yi, 2024. "Geopolitical risk and renewable energy consumption: Evidence from a spatial convergence perspective," Energy Economics, Elsevier, vol. 131(C).
    3. Chen, Zhuoyi & Liu, Yuanyuan & Zhang, Hongwei, 2024. "Can geopolitical risks impact the long-run correlation between crude oil and clean energy markets? Evidence from a regime-switching analysis," Renewable Energy, Elsevier, vol. 229(C).
    4. Lang, Chunlin & Xu, Danyang & Corbet, Shaen & Hu, Yang & Goodell, John W., 2024. "Global financial risk and market connectedness: An empirical analysis of COVOL and major financial markets," International Review of Financial Analysis, Elsevier, vol. 93(C).
    5. Andrew J. Patton & Yasin Simsek, 2023. "Generalized Autoregressive Score Trees and Forests," Papers 2305.18991, arXiv.org.
    6. Cheikh, Nidhaleddine Ben & Zaied, Younes Ben, 2023. "Investigating the dynamics of crude oil and clean energy markets in times of geopolitical tensions," Energy Economics, Elsevier, vol. 124(C).
    7. Goodell, John W. & Ben Jabeur, Sami & Saâdaoui, Foued & Nasir, Muhammad Ali, 2023. "Explainable artificial intelligence modeling to forecast bitcoin prices," International Review of Financial Analysis, Elsevier, vol. 88(C).
    8. Liu, Jiahao & Zhu, Bo & Hu, Xin, 2024. "Systemic risk spillovers among global energy firms: Does geopolitical risk matter?," Energy Economics, Elsevier, vol. 140(C).
    9. Su, Chi-Wei & Yang, Shengyao & Dumitrescu Peculea, Adelina & Ioana Biţoiu, Teodora & Qin, Meng, 2024. "Energy imports in turbulent eras: Evidence from China," Energy, Elsevier, vol. 306(C).
    10. Rabeh Khalfaoui & Sami Ben Jabeur & Shawkat Hammoudeh & Wissal Ben Arfi, 2025. "The role of political risk, uncertainty, and crude oil in predicting stock markets: evidence from the UAE economy," Annals of Operations Research, Springer, vol. 345(2), pages 1105-1135, February.
    11. Yulin Liu & Luyao Zhang, 2022. "Cryptocurrency Valuation: An Explainable AI Approach," Papers 2201.12893, arXiv.org, revised Jul 2023.
    12. Khan, Faridoon & Muhammadullah, Sara & Sharif, Arshian & Lee, Chien-Chiang, 2024. "The role of green energy stock market in forecasting China's crude oil market: An application of IIS approach and sparse regression models," Energy Economics, Elsevier, vol. 130(C).
    13. Kristof Lommers & Ouns El Harzli & Jack Kim, 2021. "Confronting Machine Learning With Financial Research," Papers 2103.00366, arXiv.org, revised Mar 2021.
    14. Igeland, Philip & Schroeder, Leon & Yahya, Muhammad & Okhrin, Yarema & Uddin, Gazi Salah, 2024. "The energy transition: The behavior of renewable energy stock during the times of energy security uncertainty," Renewable Energy, Elsevier, vol. 221(C).
    15. Branco, Rafael R. & Rubesam, Alexandre & Zevallos, Mauricio, 2024. "Forecasting realized volatility: Does anything beat linear models?," Journal of Empirical Finance, Elsevier, vol. 78(C).
    16. Hanauer, Matthias X. & Kononova, Marina & Rapp, Marc Steffen, 2022. "Boosting agnostic fundamental analysis: Using machine learning to identify mispricing in European stock markets," Finance Research Letters, Elsevier, vol. 48(C).
    17. Mohd Ziaur Rehman & Shabeer Khan & Uzair Abdullah Khan & Wadi B. Alonazi & Abul Ala Noman, 2023. "How Do Global Uncertainties Spillovers Affect Leading Renewable Energy Indices? Evidence from the Network Connectedness Approach," Sustainability, MDPI, vol. 15(18), pages 1-15, September.
    18. Ahmed, Walid M.A. & Sleem, Mohamed A.E., 2023. "Short- and long-run determinants of the price behavior of US clean energy stocks: A dynamic ARDL simulations approach," Energy Economics, Elsevier, vol. 124(C).
    19. Lorente, Daniel Balsalobre & Mohammed, Kamel Si & Cifuentes-Faura, Javier & Shahzad, Umer, 2023. "Dynamic connectedness among climate change index, green financial assets and renewable energy markets: Novel evidence from sustainable development perspective," Renewable Energy, Elsevier, vol. 204(C), pages 94-105.
    20. Niu, Zibo & Wang, Chenlu & Zhang, Hongwei, 2023. "Forecasting stock market volatility with various geopolitical risks categories: New evidence from machine learning models," International Review of Financial Analysis, Elsevier, vol. 89(C).

    More about this item

    Keywords

    COVOL; Geopolitical risks; Global financial risk; Clean energy; Explainable Artificial Intelligence Models;
    All these keywords.

    JEL classification:

    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • F3 - International Economics - - International Finance
    • F4 - International Economics - - Macroeconomic Aspects of International Trade and Finance

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:141:y:2025:i:c:s0140988324008211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.