IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v334y2024i1d10.1007_s10479-021-04187-w.html
   My bibliography  Save this article

Forecasting gold price with the XGBoost algorithm and SHAP interaction values

Author

Listed:
  • Sami Ben Jabeur

    (Confluence: Sciences Et Humanités - UCLY, ESDES)

  • Salma Mefteh-Wali

    (ESSCA School of Management)

  • Jean-Laurent Viviani

    (University of Rennes 1, CNRS)

Abstract

Financial institutions, investors, mining companies and related firms need an effective accurate forecasting model to examine gold price fluctuations in order to make correct decisions. This paper proposes an innovative approach to accurately forecast gold price movements and to interpret predictions. First, it compares six machine learning models. These models include two very recent methods: the eXtreme Gradient Boosting (XGBoost) and CatBoost. The empirical findings indicate the superiority of XGBoost over other advanced machine learning models. Second, it proposes Shapley additive explanations (SHAP) in order to help policy makers to interpret the predictions of complex machine learning models and to examine the importance of various features that affect gold prices. Our results illustrate that the utilization of XGBoost along with SHAP approach could provide a significant boost in increasing the gold price forecasting performance.

Suggested Citation

  • Sami Ben Jabeur & Salma Mefteh-Wali & Jean-Laurent Viviani, 2024. "Forecasting gold price with the XGBoost algorithm and SHAP interaction values," Annals of Operations Research, Springer, vol. 334(1), pages 679-699, March.
  • Handle: RePEc:spr:annopr:v:334:y:2024:i:1:d:10.1007_s10479-021-04187-w
    DOI: 10.1007/s10479-021-04187-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-04187-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-04187-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Gold price; XGBoost; CatBoost; Shapley additive explanations;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:334:y:2024:i:1:d:10.1007_s10479-021-04187-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.