IDEAS home Printed from https://ideas.repec.org/a/eee/ecofin/v76y2025ics1062940825000154.html
   My bibliography  Save this article

Which uncertainty measure better predicts gold prices? New evidence from a CNN-LSTM approach

Author

Listed:
  • You, Wanhai
  • Chen, Jianyong
  • Xie, Haoqi
  • Ren, Yinghua

Abstract

Quantifying the influence of uncertainty on gold prices is significant for improving related financial decision making. This study proposes a novel CNN-LSTM neural network that can extract potential features from sample data to effectively predict gold prices. Specifically, we demonstrate various uncertainty measures containing market volatility information, such as the economic policy uncertainty index (EPU), epidemic stock market volatility index (IDEMV), and volatility index (VIX), which can contribute to the prediction of gold prices rather than relying solely on the history of tickers, which is conventionally used for prediction. In addition, the proposed model is evaluated against SVR and two different LSTM models. The empirical findings reveal that incorporating additional features, such as uncertainty measures, contributes to improving the predictive accuracy of the model. The CNN-LSTM model, with the inclusion of EPU, IDEMV, and both, achieves a high prediction accuracy. Additionally, the overall prediction accuracy of the CNN-LSTM model outperforms the other proposed methods. The findings provide profound insight into portfolio diversification and risk management practices for governments and businesses.

Suggested Citation

  • You, Wanhai & Chen, Jianyong & Xie, Haoqi & Ren, Yinghua, 2025. "Which uncertainty measure better predicts gold prices? New evidence from a CNN-LSTM approach," The North American Journal of Economics and Finance, Elsevier, vol. 76(C).
  • Handle: RePEc:eee:ecofin:v:76:y:2025:i:c:s1062940825000154
    DOI: 10.1016/j.najef.2025.102375
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062940825000154
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.najef.2025.102375?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Chiang, Thomas C., 2022. "The effects of economic uncertainty, geopolitical risk and pandemic upheaval on gold prices," Resources Policy, Elsevier, vol. 76(C).
    2. Didier, Tatiana & Huneeus, Federico & Larrain, Mauricio & Schmukler, Sergio L., 2021. "Financing firms in hibernation during the COVID-19 pandemic," Journal of Financial Stability, Elsevier, vol. 53(C).
    3. Seyed Mehrzad Asaad Sajadi & Pouya Khodaee & Ehsan Hajizadeh & Sabri Farhadi & Sohaib Dastgoshade & Bo Du, 2022. "Deep Learning-Based Methods for Forecasting Brent Crude Oil Return Considering COVID-19 Pandemic Effect," Energies, MDPI, vol. 15(21), pages 1-23, October.
    4. Behmiri, Niaz Bashiri & Manera, Matteo, 2015. "The role of outliers and oil price shocks on volatility of metal prices," Resources Policy, Elsevier, vol. 46(P2), pages 139-150.
    5. Ibrahim Yousef & Esam Shehadeh, 2020. "The Impact of COVID-19 on Gold Price Volatility," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(4), pages 353-364.
    6. Atri, Hanen & Kouki, Saoussen & Gallali, Mohamed imen, 2021. "The impact of COVID-19 news, panic and media coverage on the oil and gold prices: An ARDL approach," Resources Policy, Elsevier, vol. 72(C).
    7. Adekoya, Oluwasegun B. & Oliyide, Johnson A. & Olubiyi, Ebenezer A. & Adedeji, Adedayo O., 2023. "The inflation-hedging performance of industrial metals in the world's most industrialized countries," Resources Policy, Elsevier, vol. 81(C).
    8. Lihki Rubio & Keyla Alba, 2022. "Forecasting Selected Colombian Shares Using a Hybrid ARIMA-SVR Model," Mathematics, MDPI, vol. 10(13), pages 1-21, June.
    9. Frederick A. Adjei & Mavis Adjei, 2017. "Economic policy uncertainty, market returns and expected return predictability," Journal of Financial Economic Policy, Emerald Group Publishing Limited, vol. 9(3), pages 242-259, August.
    10. Itay Goldstein & Ralph S J Koijen & Holger M Mueller, 2021. "COVID-19 and Its Impact on Financial Markets and the Real Economy [A model of endogenous risk intolerance and LSAPs: Asset prices and aggregate demand in a “COVID-19” shock]," The Review of Financial Studies, Society for Financial Studies, vol. 34(11), pages 5135-5148.
    11. Keywan Christian Rasekhschaffe & Robert C. Jones, 2019. "Machine Learning for Stock Selection," Financial Analysts Journal, Taylor & Francis Journals, vol. 75(3), pages 70-88, July.
    12. Kearney, Adrienne A. & Lombra, Raymond E., 2009. "Gold and platinum: Toward solving the price puzzle," The Quarterly Review of Economics and Finance, Elsevier, vol. 49(3), pages 884-892, August.
    13. Wang, Yu Shan & Chueh, Yen Ling, 2013. "Dynamic transmission effects between the interest rate, the US dollar, and gold and crude oil prices," Economic Modelling, Elsevier, vol. 30(C), pages 792-798.
    14. Albulescu, Claudiu Tiberiu, 2021. "COVID-19 and the United States financial markets’ volatility," Finance Research Letters, Elsevier, vol. 38(C).
    15. Parisi, Antonino & Parisi, Franco & Díaz, David, 2008. "Forecasting gold price changes: Rolling and recursive neural network models," Journal of Multinational Financial Management, Elsevier, vol. 18(5), pages 477-487, December.
    16. Maquieira, Carlos P. & Espinosa-Méndez, Christian & Gahona-Flores, Orlando, 2023. "How does economic policy uncertainty (EPU) impact copper-firms stock returns? International evidence," Resources Policy, Elsevier, vol. 81(C).
    17. Klayme, Tania & Gokmenoglu, Korhan K. & Rustamov, Bezhan, 2023. "Economic policy uncertainty, COVID-19 and corporate investment: Evidence from the gold mining industry," Resources Policy, Elsevier, vol. 85(PA).
    18. Xiao, Jihong & Jiang, Jiajie & Zhang, Yaojie, 2024. "Policy uncertainty, investor sentiment, and good and bad volatilities in the stock market: Evidence from China," Pacific-Basin Finance Journal, Elsevier, vol. 84(C).
    19. Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
    20. Rehman, Mobeen Ur & Shahzad, Syed Jawad Hussain & Uddin, Gazi Salah & Hedström, Axel, 2018. "Precious metal returns and oil shocks: A time varying connectedness approach," Resources Policy, Elsevier, vol. 58(C), pages 77-89.
    21. Cohen, Gil & Aiche, Avishay, 2023. "Forecasting gold price using machine learning methodologies," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    22. Zhang, Pinyi & Ci, Bicong, 2020. "Deep belief network for gold price forecasting," Resources Policy, Elsevier, vol. 69(C).
    23. Zha, Wenshu & Liu, Yuping & Wan, Yujin & Luo, Ruilan & Li, Daolun & Yang, Shan & Xu, Yanmei, 2022. "Forecasting monthly gas field production based on the CNN-LSTM model," Energy, Elsevier, vol. 260(C).
    24. Chai, Xuqing & Li, Shihao & Liang, Fengwei, 2024. "A novel battery SOC estimation method based on random search optimized LSTM neural network," Energy, Elsevier, vol. 306(C).
    25. Raza, Syed Ali & Shah, Nida & Shahbaz, Muhammad, 2018. "Does economic policy uncertainty influence gold prices? Evidence from a nonparametric causality-in-quantiles approach," Resources Policy, Elsevier, vol. 57(C), pages 61-68.
    26. Sharma, Susan Sunila, 2016. "Can consumer price index predict gold price returns?," Economic Modelling, Elsevier, vol. 55(C), pages 269-278.
    27. Hachmi Ben Ameur & Sahbi Boubaker & Zied Ftiti & Wael Louhichi & Kais Tissaoui, 2024. "Forecasting commodity prices: empirical evidence using deep learning tools," Annals of Operations Research, Springer, vol. 339(1), pages 349-367, August.
    28. Inzamam Ul Haq & Paulo Ferreira & Derick David Quintino & Nhan Huynh & Saowanee Samantreeporn, 2023. "Economic Policy Uncertainty, Energy and Sustainable Cryptocurrencies: Investigating Dynamic Connectedness during the COVID-19 Pandemic," Economies, MDPI, vol. 11(3), pages 1-23, February.
    29. Shafiee, Shahriar & Topal, Erkan, 2010. "An overview of global gold market and gold price forecasting," Resources Policy, Elsevier, vol. 35(3), pages 178-189, September.
    30. Risse, Marian, 2019. "Combining wavelet decomposition with machine learning to forecast gold returns," International Journal of Forecasting, Elsevier, vol. 35(2), pages 601-615.
    31. Sami Ben Jabeur & Salma Mefteh-Wali & Jean-Laurent Viviani, 2024. "Forecasting gold price with the XGBoost algorithm and SHAP interaction values," Annals of Operations Research, Springer, vol. 334(1), pages 679-699, March.
    32. Pan, Shaowei & Yang, Bo & Wang, Shukai & Guo, Zhi & Wang, Lin & Liu, Jinhua & Wu, Siyu, 2023. "Oil well production prediction based on CNN-LSTM model with self-attention mechanism," Energy, Elsevier, vol. 284(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sami Ben Jabeur & Salma Mefteh-Wali & Jean-Laurent Viviani, 2024. "Forecasting gold price with the XGBoost algorithm and SHAP interaction values," Annals of Operations Research, Springer, vol. 334(1), pages 679-699, March.
    2. Alameer, Zakaria & Elaziz, Mohamed Abd & Ewees, Ahmed A. & Ye, Haiwang & Jianhua, Zhang, 2019. "Forecasting gold price fluctuations using improved multilayer perceptron neural network and whale optimization algorithm," Resources Policy, Elsevier, vol. 61(C), pages 250-260.
    3. Raza, Syed Ali & Masood, Amna & Benkraiem, Ramzi & Urom, Christian, 2023. "Forecasting the volatility of precious metals prices with global economic policy uncertainty in pre and during the COVID-19 period: Novel evidence from the GARCH-MIDAS approach," Energy Economics, Elsevier, vol. 120(C).
    4. Cui, Moyang & Wong, Wing-Keung & Wisetsri, Worakamol & Mabrouk, Fatma & Muda, Iskandar & Li, Zeyun & Hassan, Marria, 2023. "Do oil, gold and metallic price volatilities prove gold as a safe haven during COVID-19 pandemic? Novel evidence from COVID-19 data," Resources Policy, Elsevier, vol. 80(C).
    5. Huang, Jianbai & Dong, Xuesong & Chen, Jinyu & Zhong, Meirui, 2022. "Do oil prices and economic policy uncertainty matter for precious metal returns? New insights from a TVP-VAR framework," International Review of Economics & Finance, Elsevier, vol. 78(C), pages 433-445.
    6. Cohen, Gil & Aiche, Avishay, 2023. "Forecasting gold price using machine learning methodologies," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    7. Yang, Mo & Wang, Ruotong & Zeng, Zixun & Li, Peizhi, 2024. "Improved prediction of global gold prices: An innovative Hurst-reconfiguration-based machine learning approach," Resources Policy, Elsevier, vol. 88(C).
    8. Pattnaik, Debidutta & Hassan, M. Kabir & DSouza, Arun & Ashraf, Ali, 2023. "Investment in gold: A bibliometric review and agenda for future research," Research in International Business and Finance, Elsevier, vol. 64(C).
    9. Ewees, Ahmed A. & Elaziz, Mohamed Abd & Alameer, Zakaria & Ye, Haiwang & Jianhua, Zhang, 2020. "Improving multilayer perceptron neural network using chaotic grasshopper optimization algorithm to forecast iron ore price volatility," Resources Policy, Elsevier, vol. 65(C).
    10. Zhao, Jue & Hosseini, Shahab & Chen, Qinyang & Jahed Armaghani, Danial, 2023. "Super learner ensemble model: A novel approach for predicting monthly copper price in future," Resources Policy, Elsevier, vol. 85(PB).
    11. Adekoya, Oluwasegun B. & Oliyide, Johnson A., 2021. "How COVID-19 drives connectedness among commodity and financial markets: Evidence from TVP-VAR and causality-in-quantiles techniques," Resources Policy, Elsevier, vol. 70(C).
    12. Liang, Jinhua & Ullah, Inam, 2024. "Analysis of crude oil and gold price volatility and their correlation during socio-economic crises," Resources Policy, Elsevier, vol. 98(C).
    13. Perry Sadorsky, 2021. "Predicting Gold and Silver Price Direction Using Tree-Based Classifiers," JRFM, MDPI, vol. 14(5), pages 1-21, April.
    14. Xiangyu Chen & Jittima Tongurai & Pattana Boonchoo, 2024. "Revisiting China’s Commodity Futures Market Amid the Main Waves of COVID-19 Pandemics," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 31(4), pages 1035-1063, December.
    15. Martha Gutiérrez & Giovanni Franco & Carlos Campuzano, 2013. "Gold prices: Analyzing its cyclical behavior," Revista Lecturas de Economía, Universidad de Antioquia, CIE, issue 79, pages 113-142.
    16. Luqman, Muhammad & Mugheri, Adil & Ahmad, Najid & Soytas, Ugur, 2023. "Casting shadows on natural resource commodity markets: Unraveling the quantile dilemma of gold and crude oil prices," Resources Policy, Elsevier, vol. 86(PA).
    17. Niu, Zibo & Ma, Feng & Zhang, Hongwei, 2022. "The role of uncertainty measures in volatility forecasting of the crude oil futures market before and during the COVID-19 pandemic," Energy Economics, Elsevier, vol. 112(C).
    18. Das, Debojyoti & Bhatia, Vaneet & Kumar, Surya Bhushan & Basu, Sankarshan, 2022. "Do precious metals hedge crude oil volatility jumps?," International Review of Financial Analysis, Elsevier, vol. 83(C).
    19. Chen, Yanan & Qi, Haozhi, 2024. "COVID-19 pandemic-related news and Chinese commodities futures: Time-frequency connectedness and causality-in-quantiles approaches," Energy, Elsevier, vol. 286(C).
    20. Aslam, Faheem & Zil-e-huma, & Bibi, Rashida & Ferreira, Paulo, 2022. "Cross-correlations between economic policy uncertainty and precious and industrial metals: A multifractal cross-correlation analysis," Resources Policy, Elsevier, vol. 75(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:76:y:2025:i:c:s1062940825000154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.