IDEAS home Printed from https://ideas.repec.org/a/ers/ijebaa/vviiiy2020i4p353-364.html
   My bibliography  Save this article

The Impact of COVID-19 on Gold Price Volatility

Author

Listed:
  • Ibrahim Yousef
  • Esam Shehadeh

Abstract

Purpose: This article investigates the implications of the spread of COVID-19 on gold spot prices. Design/Methodology/Approach: We use GARCH and GJR-GARCH models based on daily gold returns over the period 2012-2020 to analyze the impact of the coronavirus on the volatility of gold returns. Findings: We find a positive correlation between the increasing number of global coronavirus cases and increases in gold price. Using GARCH and GJR-GARCH models, we find a significant positive impact of COVID-19 on the conditional variance equation, indicating that the coronavirus may indeed increase the volatility of gold returns. This relates to the fact that the spread of the virus increases uncertainty with regard to the future of economic and financial markets, causing the demand for gold to increase and in turn pushing prices upwards, a trend which may be likely to continue until a vaccine or other treatments begin to stabilize the global economic outlook. Practical Implications: The issue of volatility is of significant concern to both investors and policymakers who base decisions on the relative stability of both individual financial markets and the world economy. Furthermore, volatility estimation is an essential factor in many models and has broad application to the market risk management practices of firms. Finally, understanding the volatility of the gold market is crucial for any analysis of current and future expectations regarding the risks associated with coronavirus which apply to global markets. Originality/Value: The lockdown restrictions which have been widely implemented across the globe to curb the spread of the virus have included travel prohibitions and border closures, stay-at-home and work-from-home orders, and extensive business closures, all causing immense fallout for the global economy. In the current study, we analyze for the first time the impact of the coronavirus on gold spot prices by examining their correlation with the number of cumulative global cases and daily new cases.

Suggested Citation

  • Ibrahim Yousef & Esam Shehadeh, 2020. "The Impact of COVID-19 on Gold Price Volatility," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(4), pages 353-364.
  • Handle: RePEc:ers:ijebaa:v:viii:y:2020:i:4:p:353-364
    as

    Download full text from publisher

    File URL: https://ijeba.com/journal/592/download
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    2. Claudiu Albulescu, 2020. "Coronavirus and oil price crash," Papers 2003.06184, arXiv.org, revised Mar 2020.
    3. Sadorsky, Perry, 2006. "Modeling and forecasting petroleum futures volatility," Energy Economics, Elsevier, vol. 28(4), pages 467-488, July.
    4. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    5. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    6. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing Niu & Chao Ma & Chun-Ping Chang, 2023. "The arbitrage strategy in the crude oil futures market of shanghai international energy exchange," Economic Change and Restructuring, Springer, vol. 56(2), pages 1201-1223, April.
    2. Tsai, I-Chun & Chen, Han-Bo & Lin, Che-Chun, 2024. "The ability of energy commodities to hedge the dynamic risk of epidemic black swans," Resources Policy, Elsevier, vol. 89(C).
    3. Herjuna Qobush Izzahdi & Ani Wilujeng Suryani, 2023. "COVID-19 Vaccination, Government Strict Policy and Capital Market Volatility: Evidence from ASEAN Countries," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 2, pages 117-135.
    4. Muhammad Saeed & Ijaz Ahmad & Muhammad Ahmad Usman, 2021. "Do the stocks' returns and volatility matter under the COVID-19 pandemic? A Case Study of Pakistan Stock Exchange," iRASD Journal of Economics, International Research Alliance for Sustainable Development (iRASD), vol. 3(1), pages 13-26, june.
    5. Pierdomenico Duttilo & Stefano Antonio Gattone & Tonio Di Battista, 2021. "Volatility Modeling: An Overview of Equity Markets in the Euro Area during COVID-19 Pandemic," Mathematics, MDPI, vol. 9(11), pages 1-18, May.
    6. Xu, Qingqing & Meng, Tianci & Sha, Yue & Jiang, Xia, 2022. "Volatility in metallic resources prices in COVID-19 and financial Crises-2008: Evidence from global market," Resources Policy, Elsevier, vol. 78(C).
    7. Syed Moudud-Ul-Huq & Md. Shahriar Rahman, 2025. "Stock Market Efficiency of the BRICS Countries Pre-, During, and Post Covid-19 Pandemic: A Multifractal Detrended Fluctuation Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 65(3), pages 1643-1705, March.
    8. Yang, Mo & Wang, Ruotong & Zeng, Zixun & Li, Peizhi, 2024. "Improved prediction of global gold prices: An innovative Hurst-reconfiguration-based machine learning approach," Resources Policy, Elsevier, vol. 88(C).
    9. Atri, Hanen & Kouki, Saoussen & Gallali, Mohamed imen, 2021. "The impact of COVID-19 news, panic and media coverage on the oil and gold prices: An ARDL approach," Resources Policy, Elsevier, vol. 72(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Halkos, George E. & Tsirivis, Apostolos S., 2019. "Effective energy commodity risk management: Econometric modeling of price volatility," Economic Analysis and Policy, Elsevier, vol. 63(C), pages 234-250.
    2. Dimitrios Kartsonakis-Mademlis & Nikolaos Dritsakis, 2020. "Does the Choice of the Multivariate GARCH Model on Volatility Spillovers Matter? Evidence from Oil Prices and Stock Markets in G7 Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 164-182.
    3. Wang, Yudong & Wu, Chongfeng, 2012. "Forecasting energy market volatility using GARCH models: Can multivariate models beat univariate models?," Energy Economics, Elsevier, vol. 34(6), pages 2167-2181.
    4. Wang, Yudong & Wu, Chongfeng & Yang, Li, 2016. "Forecasting crude oil market volatility: A Markov switching multifractal volatility approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 1-9.
    5. Wang, Yudong & Wu, Chongfeng, 2012. "What can we learn from the history of gasoline crack spreads?: Long memory, structural breaks and modeling implications," Economic Modelling, Elsevier, vol. 29(2), pages 349-360.
    6. Wang, Yudong & Wu, Chongfeng & Wei, Yu, 2011. "Can GARCH-class models capture long memory in WTI crude oil markets?," Economic Modelling, Elsevier, vol. 28(3), pages 921-927, May.
    7. Dang, Tam Hoang Nhat & Balli, Faruk & Balli, Hatice Ozer & Gabauer, David & Nguyen, Thi Thu Ha, 2024. "Sectoral uncertainty spillovers in emerging markets: A quantile time–frequency connectedness approach," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 121-139.
    8. Stavros Degiannakis & Evdokia Xekalaki, 2005. "Predictability and model selection in the context of ARCH models," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 21(1), pages 55-82, January.
    9. Muhammad Irfan Malik & Abdul Rashid, 2017. "Return And Volatility Spillover Between Sectoral Stock And Oil Price: Evidence From Pakistan Stock Exchange," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 12(02), pages 1-22, June.
    10. Efimova, Olga & Serletis, Apostolos, 2014. "Energy markets volatility modelling using GARCH," Energy Economics, Elsevier, vol. 43(C), pages 264-273.
    11. Chen, Hongtao & Liu, Li & Li, Xiaolei, 2018. "The predictive content of CBOE crude oil volatility index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 837-850.
    12. Arouri, Mohamed El Hédi & Lahiani, Amine & Lévy, Aldo & Nguyen, Duc Khuong, 2012. "Forecasting the conditional volatility of oil spot and futures prices with structural breaks and long memory models," Energy Economics, Elsevier, vol. 34(1), pages 283-293.
    13. Liu, Li & Wan, Jieqiu, 2012. "A study of Shanghai fuel oil futures price volatility based on high frequency data: Long-range dependence, modeling and forecasting," Economic Modelling, Elsevier, vol. 29(6), pages 2245-2253.
    14. Li, Gang & Li, Yong, 2015. "Forecasting copper futures volatility under model uncertainty," Resources Policy, Elsevier, vol. 46(P2), pages 167-176.
    15. Zhang, Yue-Jun & Yao, Ting & He, Ling-Yun & Ripple, Ronald, 2019. "Volatility forecasting of crude oil market: Can the regime switching GARCH model beat the single-regime GARCH models?," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 302-317.
    16. Di Sanzo, Silvestro, 2018. "A Markov switching long memory model of crude oil price return volatility," Energy Economics, Elsevier, vol. 74(C), pages 351-359.
    17. Hassanniakalager, Arman & Baker, Paul L. & Platanakis, Emmanouil, 2024. "A False Discovery Rate approach to optimal volatility forecasting model selection," International Journal of Forecasting, Elsevier, vol. 40(3), pages 881-902.
    18. Mosbah Lafi & Wissal Toumi, 2023. "The impact of the covid-19 pandemic on the stock markets of some countries in the MENA region: An assessment with GARCH modeling," Technium Social Sciences Journal, Technium Science, vol. 44(1), pages 764-776, June.
    19. Rahman, Md Lutfur & Troster, Victor & Uddin, Gazi Salah & Yahya, Muhammad, 2022. "Systemic risk contribution of banks and non-bank financial institutions across frequencies: The Australian experience," International Review of Financial Analysis, Elsevier, vol. 79(C).
    20. Panos Pouliasis & Ioannis Kyriakou & Nikos Papapostolou, 2017. "On equity risk prediction and tail spillovers," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 22(4), pages 379-393, October.

    More about this item

    Keywords

    Coronavirus; gold price; gold volatility; GARCH models.;
    All these keywords.

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ers:ijebaa:v:viii:y:2020:i:4:p:353-364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marios Agiomavritis (email available below). General contact details of provider: https://ijeba.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.