IDEAS home Printed from
   My bibliography  Save this article

A study on the volatility forecast of the US housing market in the 2008 crisis


  • Kui-Wai Li


This article provides the in-sample estimation and evaluates the out-of-sample conditional mean and volatility forecast performance of the conventional Generalized Autoregressive Conditional Heteroscedasticity (GARCH), Asymmetric Power Autoregressive Conditional Heteroscedasticity (APARCH) and the benchmark RiskMetrics model on the US real estate finance data for the pre-crisis and post-crisis periods in 2008. The empirical results show that the RiskMetrics model performed satisfactorily in the in-sample estimation but poorly in the out-of-sample forecast. For the post-crisis out-of-sample forecasts, all models naturally performed poorly in conditional mean and volatility forecast.

Suggested Citation

  • Kui-Wai Li, 2012. "A study on the volatility forecast of the US housing market in the 2008 crisis," Applied Financial Economics, Taylor & Francis Journals, vol. 22(22), pages 1869-1880, November.
  • Handle: RePEc:taf:apfiec:v:22:y:2012:i:22:p:1869-1880 DOI: 10.1080/09603107.2012.687096

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    1. John C. Williams & John B. Taylor, 2009. "A Black Swan in the Money Market," American Economic Journal: Macroeconomics, American Economic Association, vol. 1(1), pages 58-83, January.
    2. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    3. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    4. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
    5. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    6. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. " On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    7. Engle, Robert F & Ng, Victor K, 1993. " Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    8. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    9. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    10. West, Kenneth D, 2001. "Tests for Forecast Encompassing When Forecasts Depend on Estimated Regression Parameters," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(1), pages 29-33, January.
    11. Brailsford, Timothy J. & Faff, Robert W., 1996. "An evaluation of volatility forecasting techniques," Journal of Banking & Finance, Elsevier, vol. 20(3), pages 419-438, April.
    12. Douglas Wong & Kui-Wai Li, 2010. "Comparing the performance of relative stock return differential and real exchange rate in two financial crises," Applied Financial Economics, Taylor & Francis Journals, vol. 20(1-2), pages 137-150.
    13. Sadorsky, Perry, 2006. "Modeling and forecasting petroleum futures volatility," Energy Economics, Elsevier, vol. 28(4), pages 467-488, July.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Andreas Karatahansopoulos & Georgios Sermpinis & Jason Laws & Christian Dunis, 2014. "Modelling and Trading the Greek Stock Market with Gene Expression and Genetic Programing Algorithms," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(8), pages 596-610, December.
    2. Michael H. Breitner & Christian Dunis & Hans-Jörg Mettenheim & Christopher Neely & Georgios Sermpinis & Georgios Sermpinis & Charalampos Stasinakis & Konstantinos Theofilatos & Andreas Karathanasopoul, 2014. "Inflation and Unemployment Forecasting with Genetic Support Vector Regression," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(6), pages 471-487, September.

    More about this item

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G18 - Financial Economics - - General Financial Markets - - - Government Policy and Regulation
    • L85 - Industrial Organization - - Industry Studies: Services - - - Real Estate Services
    • R21 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Household Analysis - - - Housing Demand


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apfiec:v:22:y:2012:i:22:p:1869-1880. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.