IDEAS home Printed from
   My bibliography  Save this article

Trading asymmetric trend and volatility by leverage trend GARCH in Taiwan stock index


  • Ender Su
  • John Bilson


This article develops a leverage trend Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model by incorporating asymmetric trend of returns of the exponential autoregressive and asymmetric volatility of GARCH models to study the asymmetric effects. Using in-sample daily data of Taiex over the period 4 January 1980 to 25 August 1997 and postsample daily data over the period 26 August 1997 to 10 September 2007, the evidence reveals that a curvaceous risk-return relationship and both asymmetric volatility and asymmetric trend of returns are significant in Taiex. The episode of asymmetric trend of returns is that the positive information creates a higher return trend than the negative information of the same amount, while similarly to most studies, the evidence of asymmetric volatility appears that the negative information makes a higher volatility than the positive information of the same size. Most remarkably, we evidence that the volatility asymmetry effect is a conservative trading factor and the return trend asymmetry effect is an active trading factor. In comparison of post-sample performance using rolling-window technique, the leverage trend GARCH model indeed outperforms the other three models with single asymmetry adjusted or without asymmetry adjusted, while the asymmetry nonadjusted model performs the worst. It implies that the return trend asymmetry (active trading) and the volatility asymmetry effects (conservative trading) tend to compensate, but not offset each other.

Suggested Citation

  • Ender Su & John Bilson, 2011. "Trading asymmetric trend and volatility by leverage trend GARCH in Taiwan stock index," Applied Economics, Taylor & Francis Journals, vol. 43(26), pages 3891-3905.
  • Handle: RePEc:taf:applec:v:43:y:2011:i:26:p:3891-3905
    DOI: 10.1080/00036841003742561

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:applec:v:43:y:2011:i:26:p:3891-3905. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.