IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v35y2019i2p601-615.html
   My bibliography  Save this article

Combining wavelet decomposition with machine learning to forecast gold returns

Author

Listed:
  • Risse, Marian

Abstract

This paper combines the discrete wavelet transform with support vector regression for forecasting gold-price dynamics. The advantages of this approach are investigated using a relatively small set of economic and financial predictors. I measure model performance by differentiating between a statistically-motivated out-of-sample forecasting exercise and an economically-motivated trading strategy. Disentangling the predictors with respect to their time and frequency domains leads to improved forecasting performance. The results are robust compared to alternative forecasting approaches. My findings on the relative importances of such wavelet decompositions suggest that the influences of short-term and long-term trends are not stable over the full evaluation period.

Suggested Citation

  • Risse, Marian, 2019. "Combining wavelet decomposition with machine learning to forecast gold returns," International Journal of Forecasting, Elsevier, vol. 35(2), pages 601-615.
  • Handle: RePEc:eee:intfor:v:35:y:2019:i:2:p:601-615
    DOI: 10.1016/j.ijforecast.2018.11.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207019300020
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2018.11.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blose, Laurence E., 2010. "Gold prices, cost of carry, and expected inflation," Journal of Economics and Business, Elsevier, vol. 62(1), pages 35-47, January.
    2. Faria, Gonçalo & Verona, Fabio, 2018. "Forecasting stock market returns by summing the frequency-decomposed parts," Journal of Empirical Finance, Elsevier, vol. 45(C), pages 228-242.
    3. Dirk G. Baur & Brian M. Lucey, 2010. "Is Gold a Hedge or a Safe Haven? An Analysis of Stocks, Bonds and Gold," The Financial Review, Eastern Finance Association, vol. 45(2), pages 217-229, May.
    4. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    5. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    6. Reboredo, Juan C., 2013. "Is gold a safe haven or a hedge for the US dollar? Implications for risk management," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 2665-2676.
    7. Gary Koop & Dimitris Korobilis, 2012. "Forecasting Inflation Using Dynamic Model Averaging," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(3), pages 867-886, August.
    8. Marquering, Wessel & Verbeek, Marno, 2004. "The Economic Value of Predicting Stock Index Returns and Volatility," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 39(2), pages 407-429, June.
    9. Aye, Goodness & Gupta, Rangan & Hammoudeh, Shawkat & Kim, Won Joong, 2015. "Forecasting the price of gold using dynamic model averaging," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 257-266.
    10. Alexandridis, Antonis K. & Kampouridis, Michael & Cramer, Sam, 2017. "A comparison of wavelet networks and genetic programming in the context of temperature derivatives," International Journal of Forecasting, Elsevier, vol. 33(1), pages 21-47.
    11. Luís Aguiar-Conraria & Maria Soares, 2011. "Oil and the macroeconomy: using wavelets to analyze old issues," Empirical Economics, Springer, vol. 40(3), pages 645-655, May.
    12. Medeiros, Marcelo C. & Vasconcelos, Gabriel F.R., 2016. "Forecasting macroeconomic variables in data-rich environments," Economics Letters, Elsevier, vol. 138(C), pages 50-52.
    13. Michael W. McCracken & Serena Ng, 2016. "FRED-MD: A Monthly Database for Macroeconomic Research," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
    14. Risse, Marian & Ohl, Ludwig, 2017. "Using dynamic model averaging in state space representation with dynamic Occam’s window and applications to the stock and gold market," Journal of Empirical Finance, Elsevier, vol. 44(C), pages 158-176.
    15. H. Wong & Wai-Cheung Ip & Zhongjie Xie & Xueli Lui, 2003. "Modelling and forecasting by wavelets, and the application to exchange rates," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(5), pages 537-553.
    16. Gallegati, Marco, 2012. "A wavelet-based approach to test for financial market contagion," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3491-3497.
    17. Hossein Asgharian & Charlotte Christiansen & Ai Jun Hou, 2016. "Macro-Finance Determinants of the Long-Run Stock–Bond Correlation: The DCC-MIDAS Specification," Journal of Financial Econometrics, Oxford University Press, vol. 14(3), pages 617-642.
    18. Baur, Dirk G. & McDermott, Thomas K., 2010. "Is gold a safe haven? International evidence," Journal of Banking & Finance, Elsevier, vol. 34(8), pages 1886-1898, August.
    19. Armin Nassehi, 2016. "Melting the Pot?," CESifo Forum, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 17(03), pages 27-32, December.
    20. Onorante, Luca & Raftery, Adrian E., 2016. "Dynamic model averaging in large model spaces using dynamic Occam׳s window," European Economic Review, Elsevier, vol. 81(C), pages 2-14.
    21. Evandro Konzen & Flavio A. Ziegelmann, 2016. "LASSO‐Type Penalties for Covariate Selection and Forecasting in Time Series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(7), pages 592-612, November.
    22. Aguiar-Conraria, LuI´s & Joana Soares, Maria, 2011. "Business cycle synchronization and the Euro: A wavelet analysis," Journal of Macroeconomics, Elsevier, vol. 33(3), pages 477-489, September.
    23. Pierdzioch, Christian & Risse, Marian & Rohloff, Sebastian, 2016. "A quantile-boosting approach to forecasting gold returns," The North American Journal of Economics and Finance, Elsevier, vol. 35(C), pages 38-55.
    24. Koop, Gary & Korobilis, Dimitris, 2014. "A new index of financial conditions," European Economic Review, Elsevier, vol. 71(C), pages 101-116.
    25. O'Connor, Fergal A. & Lucey, Brian M. & Batten, Jonathan A. & Baur, Dirk G., 2015. "The financial economics of gold — A survey," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 186-205.
    26. Reichlin, Lucrezia & Giannone, Domenico & De Mol, Christine, 2006. "Forecasting Using a Large Number of Predictors: Is Bayesian Regression a Valid Alternative to Principal Components?," CEPR Discussion Papers 5829, C.E.P.R. Discussion Papers.
    27. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
    28. Theo Berger, 2016. "Forecasting Based on Decomposed Financial Return Series: A Wavelet Analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(5), pages 419-433, August.
    29. Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2013. "Complete subset regressions," Journal of Econometrics, Elsevier, vol. 177(2), pages 357-373.
    30. Garcia, Márcio G.P. & Medeiros, Marcelo C. & Vasconcelos, Gabriel F.R., 2017. "Real-time inflation forecasting with high-dimensional models: The case of Brazil," International Journal of Forecasting, Elsevier, vol. 33(3), pages 679-693.
    31. Beckmann, Joscha & Czudaj, Robert, 2013. "Gold as an inflation hedge in a time-varying coefficient framework," The North American Journal of Economics and Finance, Elsevier, vol. 24(C), pages 208-222.
    32. repec:zbw:bofrdp:2017_001 is not listed on IDEAS
    33. António Rua, 2011. "A wavelet approach for factor‐augmented forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(7), pages 666-678, November.
    34. Rua, António & Nunes, Luís C., 2009. "International comovement of stock market returns: A wavelet analysis," Journal of Empirical Finance, Elsevier, vol. 16(4), pages 632-639, September.
    35. Ramsey, J.B., 2002. "Wavelets in Economics and Finance: Past and Future," Working Papers 02-02, C.V. Starr Center for Applied Economics, New York University.
    36. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    37. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    38. Neill Fortune, J., 1987. "The inflation rate of the price of gold, expected prices and interest rates," Journal of Macroeconomics, Elsevier, vol. 9(1), pages 71-82.
    39. Joscha Beckmann & Theo Berger & Robert Czudaj, 2019. "Gold price dynamics and the role of uncertainty," Quantitative Finance, Taylor & Francis Journals, vol. 19(4), pages 663-681, April.
    40. Gary Koop & Simon Potter, 2004. "Forecasting in dynamic factor models using Bayesian model averaging," Econometrics Journal, Royal Economic Society, vol. 7(2), pages 550-565, December.
    41. Rua, António, 2017. "A wavelet-based multivariate multiscale approach for forecasting," International Journal of Forecasting, Elsevier, vol. 33(3), pages 581-590.
    42. Hossein Hassani & Emmanuel Sirimal Silva & Rangan Gupta & Mawuli K. Segnon, 2015. "Forecasting the price of gold," Applied Economics, Taylor & Francis Journals, vol. 47(39), pages 4141-4152, August.
    43. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    44. Bulligan, Guido & Marcellino, Massimiliano & Venditti, Fabrizio, 2015. "Forecasting economic activity with targeted predictors," International Journal of Forecasting, Elsevier, vol. 31(1), pages 188-206.
    45. Mittnik, Stefan & Robinzonov, Nikolay & Spindler, Martin, 2015. "Stock market volatility: Identifying major drivers and the nature of their impact," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 1-14.
    46. Rapach, David E. & Ringgenberg, Matthew C. & Zhou, Guofu, 2016. "Short interest and aggregate stock returns," Journal of Financial Economics, Elsevier, vol. 121(1), pages 46-65.
    47. Baur, Dirk G. & Beckmann, Joscha & Czudaj, Robert, 2016. "A melting pot — Gold price forecasts under model and parameter uncertainty," International Review of Financial Analysis, Elsevier, vol. 48(C), pages 282-291.
    48. Conejo, Antonio J. & Contreras, Javier & Espinola, Rosa & Plazas, Miguel A., 2005. "Forecasting electricity prices for a day-ahead pool-based electric energy market," International Journal of Forecasting, Elsevier, vol. 21(3), pages 435-462.
    49. Patrick M. Crowley, 2007. "A Guide To Wavelets For Economists," Journal of Economic Surveys, Wiley Blackwell, vol. 21(2), pages 207-267, April.
    50. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008. "Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?," Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
    51. Mahdavi, Saeid & Zhou, Su, 1997. "Gold and commodity prices as leading indicators of inflation: Tests of long-run relationship and predictive performance," Journal of Economics and Business, Elsevier, vol. 49(5), pages 475-489.
    52. Gibbons, Michael R & Ross, Stephen A & Shanken, Jay, 1989. "A Test of the Efficiency of a Given Portfolio," Econometrica, Econometric Society, vol. 57(5), pages 1121-1152, September.
    53. Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2015. "Complete subset regressions with large-dimensional sets of predictors," Journal of Economic Dynamics and Control, Elsevier, vol. 54(C), pages 86-110.
    54. Capie, Forrest & Mills, Terence C. & Wood, Geoffrey, 2005. "Gold as a hedge against the dollar," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 15(4), pages 343-352, October.
    55. Beckmann, Joscha & Berger, Theo & Czudaj, Robert, 2015. "Does gold act as a hedge or a safe haven for stocks? A smooth transition approach," Economic Modelling, Elsevier, vol. 48(C), pages 16-24.
    56. Döpke, Jörg & Fritsche, Ulrich & Pierdzioch, Christian, 2017. "Predicting recessions with boosted regression trees," International Journal of Forecasting, Elsevier, vol. 33(4), pages 745-759.
    57. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
    58. Karatzoglou, Alexandros & Smola, Alexandros & Hornik, Kurt & Zeileis, Achim, 2004. "kernlab - An S4 Package for Kernel Methods in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 11(i09).
    59. Batten, Jonathan A. & Ciner, Cetin & Lucey, Brian M, 2014. "On the economic determinants of the gold–inflation relation," Resources Policy, Elsevier, vol. 41(C), pages 101-108.
    60. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    61. Leitch, Gordon & Tanner, J Ernest, 1991. "Economic Forecast Evaluation: Profits versus the Conventional Error Measures," American Economic Review, American Economic Association, vol. 81(3), pages 580-590, June.
    62. Ramsey James B., 2002. "Wavelets in Economics and Finance: Past and Future," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 6(3), pages 1-29, November.
    63. repec:zbw:bofrdp:2016_029 is not listed on IDEAS
    64. Risse, Marian & Kern, Martin, 2016. "Forecasting house-price growth in the Euro area with dynamic model averaging," The North American Journal of Economics and Finance, Elsevier, vol. 38(C), pages 70-85.
    65. Christian Pierdzioch & Marian Risse & Sebastian Rohloff, 2016. "A boosting approach to forecasting gold and silver returns: economic and statistical forecast evaluation," Applied Economics Letters, Taylor & Francis Journals, vol. 23(5), pages 347-352, March.
    66. Pukthuanthong, Kuntara & Roll, Richard, 2011. "Gold and the Dollar (and the Euro, Pound, and Yen)," Journal of Banking & Finance, Elsevier, vol. 35(8), pages 2070-2083, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Risse, Marian & Ohl, Ludwig, 2017. "Using dynamic model averaging in state space representation with dynamic Occam’s window and applications to the stock and gold market," Journal of Empirical Finance, Elsevier, vol. 44(C), pages 158-176.
    2. Dichtl, Hubert, 2020. "Forecasting excess returns of the gold market: Can we learn from stock market predictions?," Journal of Commodity Markets, Elsevier, vol. 19(C).
    3. Vasilios Plakandaras & Periklis Gogas & Theophilos Papadimitriou, 2021. "Gold Against the Machine," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 5-28, January.
    4. Nguyen, Duc Binh Benno & Prokopczuk, Marcel & Wese Simen, Chardin, 2019. "The risk premium of gold," Journal of International Money and Finance, Elsevier, vol. 94(C), pages 140-159.
    5. Thi Hong Van Hoang & Amine Lahiani & David Heller, 2016. "Is gold a hedge against inflation? New evidence from a nonlinear ARDL approach," Post-Print hal-02012307, HAL.
    6. Hoang, Thi Hong Van & Lahiani, Amine & Heller, David, 2016. "Is gold a hedge against inflation? New evidence from a nonlinear ARDL approach," Economic Modelling, Elsevier, vol. 54(C), pages 54-66.
    7. Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
    8. Gonçalo Faria & Fabio Verona, 2016. "Forecasting the equity risk premium with frequency-decomposed predictors," Working Papers de Economia (Economics Working Papers) 06, Católica Porto Business School, Universidade Católica Portuguesa.
    9. Gupta, Rangan & Majumdar, Anandamayee & Pierdzioch, Christian & Wohar, Mark E., 2017. "Do terror attacks predict gold returns? Evidence from a quantile-predictive-regression approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 65(C), pages 276-284.
    10. Joscha Beckmann & Theo Berger & Robert Czudaj, 2019. "Gold price dynamics and the role of uncertainty," Quantitative Finance, Taylor & Francis Journals, vol. 19(4), pages 663-681, April.
    11. Souropanis, Ioannis & Vivian, Andrew, 2023. "Forecasting realized volatility with wavelet decomposition," Journal of Empirical Finance, Elsevier, vol. 74(C).
    12. O'Connor, Fergal A. & Lucey, Brian M. & Batten, Jonathan A. & Baur, Dirk G., 2015. "The financial economics of gold — A survey," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 186-205.
    13. repec:zbw:bofrdp:2020_006 is not listed on IDEAS
    14. Gonçalo Faria & Fabio Verona, 2016. "Forecasting the equity risk premium with frequency-decomposed predictors," Working Papers de Economia (Economics Working Papers) 06, Católica Porto Business School, Universidade Católica Portuguesa.
    15. Gonçalo Faria & Fabio Verona, 2021. "Time-frequency forecast of the equity premium," Quantitative Finance, Taylor & Francis Journals, vol. 21(12), pages 2119-2135, December.
    16. Plakandaras, Vasilios & Ji, Qiang, 2022. "Intrinsic decompositions in gold forecasting," Journal of Commodity Markets, Elsevier, vol. 28(C).
    17. Gonçalo Faria & Fabio Verona, 2021. "Time-frequency forecast of the equity premium," Quantitative Finance, Taylor & Francis Journals, vol. 21(12), pages 2119-2135, December.
    18. repec:zbw:bofrdp:2017_001 is not listed on IDEAS
    19. Zhang, Yaojie & Ma, Feng & Wang, Yudong, 2019. "Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 97-117.
    20. repec:zbw:bofrdp:2018_007 is not listed on IDEAS
    21. Han, Liyan & Xu, Yang & Yin, Libo, 2017. "Does investor attention matter? The attention-return relation in gold futures market," Economics Discussion Papers 2017-37, Kiel Institute for the World Economy (IfW Kiel).
    22. Qureshi, Saba & Rehman, Ijaz Ur & Qureshi, Fiza, 2018. "Does gold act as a safe haven against exchange rate fluctuations? The case of Pakistan rupee," Journal of Policy Modeling, Elsevier, vol. 40(4), pages 685-708.
    23. Sharma, Susan Sunila, 2016. "Can consumer price index predict gold price returns?," Economic Modelling, Elsevier, vol. 55(C), pages 269-278.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:35:y:2019:i:2:p:601-615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.