Intrinsic decompositions in gold forecasting
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jcomm.2022.100245
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Marquering, Wessel & Verbeek, Marno, 2004.
"The Economic Value of Predicting Stock Index Returns and Volatility,"
Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 39(2), pages 407-429, June.
- Wessel Marquering & Marno Verbeek, 2000. "The Economic Value of Predicting Stock Index Returns and Volatility," Working Papers of Department of Economics, Leuven ces0020, KU Leuven, Faculty of Economics and Business (FEB), Department of Economics, Leuven.
- Marquering, W. & Verbeek, M.J.C.M., 2000. "The Economic Value of Predicting Stock Index Returns and Volatility," Discussion Paper 2000-78, Tilburg University, Center for Economic Research.
- Marquering, W.A. & Verbeek, M.J.C.M., 2001. "The Economic Value of Predicting Stock Index Returns and Volatility," ERIM Report Series Research in Management ERS-2001-75-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
- Wessel Marquering & Marno Verbeek, 2000. "The Economic Value of Predicting Stock Index Returns and Volatility," Working Papers of Department of Economics, Leuven 501075, KU Leuven, Faculty of Economics and Business (FEB), Department of Economics, Leuven.
- Aye, Goodness & Gupta, Rangan & Hammoudeh, Shawkat & Kim, Won Joong, 2015.
"Forecasting the price of gold using dynamic model averaging,"
International Review of Financial Analysis, Elsevier, vol. 41(C), pages 257-266.
- Goodness C. Aye & Rangan Gupta & Shawkat Hammoudeh & Won Joong Kim, 2014. "Forecasting the Price of Gold Using Dynamic Model Averaging," Working Papers 201415, University of Pretoria, Department of Economics.
- Risse, Marian & Ohl, Ludwig, 2017. "Using dynamic model averaging in state space representation with dynamic Occam’s window and applications to the stock and gold market," Journal of Empirical Finance, Elsevier, vol. 44(C), pages 158-176.
- Vasilios Plakandaras & Theophilos Papadimitriou & Periklis Gogas, 2015.
"Forecasting Daily and Monthly Exchange Rates with Machine Learning Techniques,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(7), pages 560-573, November.
- Papadimitriou, Theophilos & Gogas, Periklis & Plakandaras, Vasilios, 2013. "Forecasting daily and monthly exchange rates with machine learning techniques," DUTH Research Papers in Economics 3-2013, Democritus University of Thrace, Department of Economics, revised 07 Apr 2015.
- Baur, Dirk G. & McDermott, Thomas K., 2010.
"Is gold a safe haven? International evidence,"
Journal of Banking & Finance, Elsevier, vol. 34(8), pages 1886-1898, August.
- Dirk G. Baur & Thomas K. McDermott, "undated". "Is gold a safe haven? International evidence," The Institute for International Integration Studies Discussion Paper Series iiisdp310, IIIS.
- Hodrick, Robert J & Prescott, Edward C, 1997.
"Postwar U.S. Business Cycles: An Empirical Investigation,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 29(1), pages 1-16, February.
- Robert J. Hodrick & Edward Prescott, 1981. "Post-War U.S. Business Cycles: An Empirical Investigation," Discussion Papers 451, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
- Dirk G. Baur & Brian M. Lucey, 2010.
"Is Gold a Hedge or a Safe Haven? An Analysis of Stocks, Bonds and Gold,"
The Financial Review, Eastern Finance Association, vol. 45(2), pages 217-229, May.
- Dirk G. Baur & Brian M. Lucey, 2007. "Is Gold a Hedge or a Safe Haven? An Analysis of Stocks, Bonds and Gold," The Institute for International Integration Studies Discussion Paper Series iiisdp198, IIIS.
- Wang, Yudong & Liu, Li & Wu, Chongfeng, 2020. "Forecasting commodity prices out-of-sample: Can technical indicators help?," International Journal of Forecasting, Elsevier, vol. 36(2), pages 666-683.
- Beckmann, Joscha & Czudaj, Robert, 2013.
"Gold as an inflation hedge in a time-varying coefficient framework,"
The North American Journal of Economics and Finance, Elsevier, vol. 24(C), pages 208-222.
- Beckmann, Joscha & Czudaj, Robert, 2012. "Gold as an Infl ation Hedge in a Time-Varying Coefficient Framework," Ruhr Economic Papers 362, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
- Clark, Todd E. & West, Kenneth D., 2007.
"Approximately normal tests for equal predictive accuracy in nested models,"
Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
- Todd E. Clark & Kenneth D. West, 2005. "Approximately normal tests for equal predictive accuracy in nested models," Research Working Paper RWP 05-05, Federal Reserve Bank of Kansas City.
- Kenneth D. West & Todd Clark, 2006. "Approximately Normal Tests for Equal Predictive Accuracy in Nested Models," NBER Technical Working Papers 0326, National Bureau of Economic Research, Inc.
- Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
- Brian M. Lucey & Charles Larkin & Fergal O'Connor, 2014. "Gold markets around the world - who spills over what, to whom, when?," Applied Economics Letters, Taylor & Francis Journals, vol. 21(13), pages 887-892, September.
- He, Zhen & O'Connor, Fergal & Thijssen, Jacco, 2018. "Is gold a Sometime Safe Haven or an Always Hedge for equity investors? A Markov-Switching CAPM approach for US and UK stock indices," International Review of Financial Analysis, Elsevier, vol. 60(C), pages 30-37.
- Pierdzioch, Christian & Risse, Marian & Rohloff, Sebastian, 2015. "A real-time quantile-regression approach to forecasting gold returns under asymmetric loss," Resources Policy, Elsevier, vol. 45(C), pages 299-306.
- Baur, Dirk G. & Beckmann, Joscha & Czudaj, Robert, 2016. "A melting pot — Gold price forecasts under model and parameter uncertainty," International Review of Financial Analysis, Elsevier, vol. 48(C), pages 282-291.
- Rapach, David E. & Ringgenberg, Matthew C. & Zhou, Guofu, 2016.
"Short interest and aggregate stock returns,"
Journal of Financial Economics, Elsevier, vol. 121(1), pages 46-65.
- David E. Rapach & Matthew C. Ringgenberg & Guofu Zhou, 2016. "Short interest and aggregate stock returns," CEMA Working Papers 716, China Economics and Management Academy, Central University of Finance and Economics.
- Ciner, Cetin & Gurdgiev, Constantin & Lucey, Brian M., 2013. "Hedges and safe havens: An examination of stocks, bonds, gold, oil and exchange rates," International Review of Financial Analysis, Elsevier, vol. 29(C), pages 202-211.
- John Y. Campbell & Samuel B. Thompson, 2008.
"Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?,"
The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
- Campbell, John & Thompson, Samuel P., 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," Scholarly Articles 2622619, Harvard University Department of Economics.
- Zhang, Yaojie & Ma, Feng & Liao, Yin, 2020. "Forecasting global equity market volatilities," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1454-1475.
- Gupta, Rangan & Majumdar, Anandamayee & Pierdzioch, Christian & Wohar, Mark E., 2017.
"Do terror attacks predict gold returns? Evidence from a quantile-predictive-regression approach,"
The Quarterly Review of Economics and Finance, Elsevier, vol. 65(C), pages 276-284.
- Rangan Gupta & Anandamayee Majumdar & Christian Pierdzioch & Mark Wohar, 2016. "Do Terror Attacks Predict Gold Returns? Evidence from a Quantile-Predictive-Regression Approach," Working Papers 201626, University of Pretoria, Department of Economics.
- Risse, Marian, 2019. "Combining wavelet decomposition with machine learning to forecast gold returns," International Journal of Forecasting, Elsevier, vol. 35(2), pages 601-615.
- Nguyen, Duc Binh Benno & Prokopczuk, Marcel & Wese Simen, Chardin, 2019.
"The risk premium of gold,"
Journal of International Money and Finance, Elsevier, vol. 94(C), pages 140-159.
- Nguyen, Duc Binh Benno & Prokopczuk, Marcel & Wese Simen, Chardin, 2017. "The Risk Premium of Gold," Hannover Economic Papers (HEP) dp-616, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Zhang, Yaojie & Ma, Feng & Wang, Yudong, 2019. "Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 97-117.
- Pierdzioch, Christian & Risse, Marian & Rohloff, Sebastian, 2014. "The international business cycle and gold-price fluctuations," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(2), pages 292-305.
- Smales, Lee A., 2014. "News sentiment in the gold futures market," Journal of Banking & Finance, Elsevier, vol. 49(C), pages 275-286.
- Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
- Bredin, Don & Conlon, Thomas & Potì, Valerio, 2015. "Does gold glitter in the long-run? Gold as a hedge and safe haven across time and investment horizon," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 320-328.
- Neill Fortune, J., 1987. "The inflation rate of the price of gold, expected prices and interest rates," Journal of Macroeconomics, Elsevier, vol. 9(1), pages 71-82.
- Baur, Dirk G., 2011. "Explanatory mining for gold: Contrasting evidence from simple and multiple regressions," Resources Policy, Elsevier, vol. 36(3), pages 265-275, September.
- Pesaran, M Hashem & Timmermann, Allan, 1995. "Predictability of Stock Returns: Robustness and Economic Significance," Journal of Finance, American Finance Association, vol. 50(4), pages 1201-1228, September.
- Malliaris, A.G. & Malliaris, Mary, 2015. "What drives gold returns? A decision tree analysis," Finance Research Letters, Elsevier, vol. 13(C), pages 45-53.
- Mark, Joy, 2011. "Gold and the US dollar: Hedge or haven?," Finance Research Letters, Elsevier, vol. 8(3), pages 120-131, September.
- Reboredo, Juan C., 2013. "Is gold a hedge or safe haven against oil price movements?," Resources Policy, Elsevier, vol. 38(2), pages 130-137.
- Shafiee, Shahriar & Topal, Erkan, 2010. "An overview of global gold market and gold price forecasting," Resources Policy, Elsevier, vol. 35(3), pages 178-189, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Rangan Gupta & Anandamayee Majumdar & Christian Pierdzioch & Onur Polat, 2024.
"Climate Risks and Real Gold Returns over 750 Years,"
Forecasting, MDPI, vol. 6(4), pages 1-16, October.
- Rangan Gupta & Anandamayee Majumdar & Christian Pierdzioch & Onur Polat, 2024. "Climate Risks and Real Gold Returns over 750 Years," Working Papers 202436, University of Pretoria, Department of Economics.
- Wang, Jiqian & Guo, Xiaozhu & Tan, Xueping & Chevallier, Julien & Ma, Feng, 2023. "Which exogenous driver is informative in forecasting European carbon volatility: Bond, commodity, stock or uncertainty?," Energy Economics, Elsevier, vol. 117(C).
- Das, Sudeepa & Sahu, Tirath Prasad & Janghel, Rekh Ram, 2022. "Oil and gold price prediction using optimized fuzzy inference system based extreme learning machine," Resources Policy, Elsevier, vol. 79(C).
- Luo, Qin & Ma, Feng & Wang, Jiqian & Wu, You, 2024. "Changing determinant driver and oil volatility forecasting: A comprehensive analysis," Energy Economics, Elsevier, vol. 129(C).
- Cohen, Gil & Aiche, Avishay, 2023. "Forecasting gold price using machine learning methodologies," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Vasilios Plakandaras & Periklis Gogas & Theophilos Papadimitriou, 2021. "Gold Against the Machine," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 5-28, January.
- Dichtl, Hubert, 2020. "Forecasting excess returns of the gold market: Can we learn from stock market predictions?," Journal of Commodity Markets, Elsevier, vol. 19(C).
- O'Connor, Fergal A. & Lucey, Brian M. & Batten, Jonathan A. & Baur, Dirk G., 2015.
"The financial economics of gold — A survey,"
International Review of Financial Analysis, Elsevier, vol. 41(C), pages 186-205.
- O'Connor, Fergal & Lucey, Brian & Batten, Jonathan & Baur, Dirk, 2015. "The Financial Economics of Gold - a survey," MPRA Paper 65484, University Library of Munich, Germany.
- Risse, Marian, 2019. "Combining wavelet decomposition with machine learning to forecast gold returns," International Journal of Forecasting, Elsevier, vol. 35(2), pages 601-615.
- Rangan Gupta & Sayar Karmakar & Christian Pierdzioch, 2024.
"Safe Havens, Machine Learning, and the Sources of Geopolitical Risk: A Forecasting Analysis Using Over a Century of Data,"
Computational Economics, Springer;Society for Computational Economics, vol. 64(1), pages 487-513, July.
- Rangan Gupta & Sayar Karmakar & Christian Pierdzioch, 2022. "Safe Havens, Machine Learning, and the Sources of Geopolitical Risk: A Forecasting Analysis Using Over a Century of Data," Working Papers 202201, University of Pretoria, Department of Economics.
- Hoang, Thi-Hong-Van & Wong, Wing-Keung & Zhu, Zhenzhen, 2015.
"Is gold different for risk-averse and risk-seeking investors? An empirical analysis of the Shanghai Gold Exchange,"
Economic Modelling, Elsevier, vol. 50(C), pages 200-211.
- Thi-Hong-Van Hoang & Wing-Keung Wong & Zhenzhen Zhu, 2015. "Is gold different for risk-averse and risk-seeking investors? An empirical analysis of the Shanghai Gold Exchange," Post-Print hal-02010732, HAL.
- Pierdzioch, Christian & Risse, Marian & Rohloff, Sebastian, 2016. "A boosting approach to forecasting the volatility of gold-price fluctuations under flexible loss," Resources Policy, Elsevier, vol. 47(C), pages 95-107.
- Semeyutin, Artur & Downing, Gareth, 2022. "Co-jumps in the U.S. interest rates and precious metals markets and their implications for investors," International Review of Financial Analysis, Elsevier, vol. 81(C).
- Pierdzioch, Christian & Risse, Marian & Rohloff, Sebastian, 2016. "Are precious metals a hedge against exchange-rate movements? An empirical exploration using bayesian additive regression trees," The North American Journal of Economics and Finance, Elsevier, vol. 38(C), pages 27-38.
- Joscha Beckmann & Theo Berger & Robert Czudaj & Thi-Hong-Van Hoang, 2019.
"Tail dependence between gold and sectorial stocks in China: perspectives for portfolio diversification,"
Empirical Economics, Springer, vol. 56(3), pages 1117-1144, March.
- Joscha Beckmann & Theo Berger & Robert Czudaj & Thi-Hong-Van Hoang, 2016. "Tail dependence between gold and sectorial stocks in China: perspectives for portfolio diversification," Post-Print hal-02053864, HAL.
- Joscha Beckmann & Theo Berger & Robert Czudaj & Thi-Hong-Van Hoang, 2017. "Tail dependence between gold and sectorial stocks in China: Perspectives for portfolio diversication," Chemnitz Economic Papers 012, Department of Economics, Chemnitz University of Technology, revised Jul 2017.
- Gupta, Rangan & Majumdar, Anandamayee & Pierdzioch, Christian & Wohar, Mark E., 2017.
"Do terror attacks predict gold returns? Evidence from a quantile-predictive-regression approach,"
The Quarterly Review of Economics and Finance, Elsevier, vol. 65(C), pages 276-284.
- Rangan Gupta & Anandamayee Majumdar & Christian Pierdzioch & Mark Wohar, 2016. "Do Terror Attacks Predict Gold Returns? Evidence from a Quantile-Predictive-Regression Approach," Working Papers 201626, University of Pretoria, Department of Economics.
- Wang, Xinya & Lucey, Brian & Huang, Shupei, 2022. "Can gold hedge against oil price movements: Evidence from GARCH-EVT wavelet modeling," Journal of Commodity Markets, Elsevier, vol. 27(C).
- Qureshi, Saba & Rehman, Ijaz Ur & Qureshi, Fiza, 2018. "Does gold act as a safe haven against exchange rate fluctuations? The case of Pakistan rupee," Journal of Policy Modeling, Elsevier, vol. 40(4), pages 685-708.
- Charteris, Ailie & Kallinterakis, Vasileios, 2021. "Feedback trading in retail-dominated assets: Evidence from the gold bullion coin market," International Review of Financial Analysis, Elsevier, vol. 75(C).
- Bekiros, Stelios & Boubaker, Sabri & Nguyen, Duc Khuong & Uddin, Gazi Salah, 2017.
"Black swan events and safe havens: The role of gold in globally integrated emerging markets,"
Journal of International Money and Finance, Elsevier, vol. 73(PB), pages 317-334.
- Bekiros, Stelios & Boubaker, Sabri & Nguyen, Duc Khuong & Uddin, Gazi Salah, 2015. "Black Swan Events and Safe Havens: The role of Gold in Globally Integrated Emerging Markets," MPRA Paper 75740, University Library of Munich, Germany, revised Nov 2016.
- Shahzad, Syed Jawad Hussain & Mensi, Walid & Hammoudeh, Shawkat & Sohail, Asiya & Al-Yahyaee, Khamis Hamed, 2019. "Does gold act as a hedge against different nuances of inflation? Evidence from Quantile-on-Quantile and causality-in- quantiles approaches," Resources Policy, Elsevier, vol. 62(C), pages 602-615.
- Perry Sadorsky, 2021. "Predicting Gold and Silver Price Direction Using Tree-Based Classifiers," JRFM, MDPI, vol. 14(5), pages 1-21, April.
- Walid Mensi & Debasish Maitra & Refk Selmi & Xuan Vinh Vo, 2023. "Extreme dependencies and spillovers between gold and stock markets: evidence from MENA countries," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-27, December.
- Wen, Danyan & Wang, Yudong & Ma, Chaoqun & Zhang, Yaojie, 2020. "Information transmission between gold and financial assets: Mean, volatility, or risk spillovers?," Resources Policy, Elsevier, vol. 69(C).
- Risse, Marian & Ohl, Ludwig, 2017. "Using dynamic model averaging in state space representation with dynamic Occam’s window and applications to the stock and gold market," Journal of Empirical Finance, Elsevier, vol. 44(C), pages 158-176.
More about this item
Keywords
Machine learning; Support vector regression; Ensemble empirical mode decomposition;All these keywords.
JEL classification:
- C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
- C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
- G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jocoma:v:28:y:2022:i:c:s2405851322000034. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jcomm .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.