Combining wavelet decomposition with machine learning to forecast gold returns
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Anis Jarboui & Emna Mnif, 2024. "Can Clean Energy Stocks Predict Crude Oil Markets Using Hybrid and Advanced Machine Learning Models?," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 31(4), pages 821-844, December.
- Zhang, Yaojie & Wang, Yudong, 2023. "Forecasting crude oil futures market returns: A principal component analysis combination approach," International Journal of Forecasting, Elsevier, vol. 39(2), pages 659-673.
- Yishun Liu & Chunhua Yang & Keke Huang & Weiping Liu, 2023. "A Multi-Factor Selection and Fusion Method through the CNN-LSTM Network for Dynamic Price Forecasting," Mathematics, MDPI, vol. 11(5), pages 1-20, February.
- Nakagawa, Kei & Sakemoto, Ryuta, 2022. "Cryptocurrency network factors and gold," Finance Research Letters, Elsevier, vol. 46(PB).
- Esparcia, Carlos & Jareño, Francisco & Umar, Zaghum, 2022. "Revisiting the safe haven role of Gold across time and frequencies during the COVID-19 pandemic," The North American Journal of Economics and Finance, Elsevier, vol. 61(C).
- He, Zhichao & Huang, Jianhua, 2023. "A novel non-ferrous metal price hybrid forecasting model based on data preprocessing and error correction," Resources Policy, Elsevier, vol. 86(PB).
- Gaoxiu Qiao & Wanmei Cui & Yijie Zhou & Chao Liang, 2025. "Volatility of Volatility and VIX Forecasting: New Evidence Based on Jumps, the Short‐Term and Long‐Term Volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 45(1), pages 23-46, January.
- Du, Pei & Guo, Ju’e & Sun, Shaolong & Wang, Shouyang & Wu, Jing, 2021. "Multi-step metal prices forecasting based on a data preprocessing method and an optimized extreme learning machine by marine predators algorithm," Resources Policy, Elsevier, vol. 74(C).
- Yelin Wang & Ping Yang & Zan Song & Julien Chevallier & Qingtai Xiao, 2024. "Intelligent Prediction of Annual CO2 Emissions Under Data Decomposition Mode," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 711-740, February.
- Syed Abul, Basher & Perry, Sadorsky, 2022. "Forecasting Bitcoin price direction with random forests: How important are interest rates, inflation, and market volatility?," MPRA Paper 113293, University Library of Munich, Germany.
- You, Wanhai & Chen, Jianyong & Xie, Haoqi & Ren, Yinghua, 2025. "Which uncertainty measure better predicts gold prices? New evidence from a CNN-LSTM approach," The North American Journal of Economics and Finance, Elsevier, vol. 76(C).
- Alexandridis, Antonios K. & Panopoulou, Ekaterini & Souropanis, Ioannis, 2024. "Forecasting exchange rate volatility: An amalgamation approach," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 97(C).
- Faria, Gonçalo & Verona, Fabio, 2024. "Enhancing forecast accuracy through frequencydomain combination: Applications to financial and economic indicators," Bank of Finland Research Discussion Papers 14/2024, Bank of Finland.
- Shang, Yue & Wei, Yu & Chen, Yongfei, 2022. "Cryptocurrency policy uncertainty and gold return forecasting: A dynamic Occam's window approach," Finance Research Letters, Elsevier, vol. 50(C).
- Zhifeng Dai & Jie Kang & Hua Yin, 2023. "Forecasting equity risk premium: A new method based on wavelet de‐noising," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(4), pages 4331-4352, October.
- Kim C. Raath & Katherine B. Ensor, 2023. "Wavelet-L2E Stochastic Volatility Models: an Application to the Water-Energy Nexus," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 150-176, May.
- Czudaj, Robert L., 2019.
"Crude oil futures trading and uncertainty,"
Energy Economics, Elsevier, vol. 80(C), pages 793-811.
- Robert Czudaj, 2019. "Crude oil futures trading and uncertainty," Chemnitz Economic Papers 027, Department of Economics, Chemnitz University of Technology, revised Jan 2019.
- Sami Ben Jabeur & Salma Mefteh-Wali & Jean-Laurent Viviani, 2024. "Forecasting gold price with the XGBoost algorithm and SHAP interaction values," Annals of Operations Research, Springer, vol. 334(1), pages 679-699, March.
- Liu, Qing & Liu, Min & Zhou, Hanlu & Yan, Feng, 2022. "A multi-model fusion based non-ferrous metal price forecasting," Resources Policy, Elsevier, vol. 77(C).
- Xu, Kunliang & Wang, Weiqing, 2023. "Limited information limits accuracy: Whether ensemble empirical mode decomposition improves crude oil spot price prediction?," International Review of Financial Analysis, Elsevier, vol. 87(C).
- Perry Sadorsky, 2021. "Predicting Gold and Silver Price Direction Using Tree-Based Classifiers," JRFM, MDPI, vol. 14(5), pages 1-21, April.
- Zhao, Yuan & Gong, Xue & Zhang, Weiguo & Xu, Weijun, 2024. "Forecasting carbon futures returns using feature selection and Markov chain with sample distribution," Energy Economics, Elsevier, vol. 140(C).
- Souropanis, Ioannis & Vivian, Andrew, 2023. "Forecasting realized volatility with wavelet decomposition," Journal of Empirical Finance, Elsevier, vol. 74(C).
- Lu, Xinjie & Ma, Feng & Xu, Jin & Zhang, Zehui, 2022. "Oil futures volatility predictability: New evidence based on machine learning models11All the authors contribute to the paper equally," International Review of Financial Analysis, Elsevier, vol. 83(C).
- Berger, Theo & Czudaj, Robert L., 2020. "Commodity futures and a wavelet-based risk assessment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
- Plakandaras, Vasilios & Ji, Qiang, 2022. "Intrinsic decompositions in gold forecasting," Journal of Commodity Markets, Elsevier, vol. 28(C).
- Li, Yuze & Jiang, Shangrong & Li, Xuerong & Wang, Shouyang, 2021. "The role of news sentiment in oil futures returns and volatility forecasting: Data-decomposition based deep learning approach," Energy Economics, Elsevier, vol. 95(C).
- Lin, Boqiang & Su, Tong, 2021. "Do China's macro-financial factors determine the Shanghai crude oil futures market?," International Review of Financial Analysis, Elsevier, vol. 78(C).
- Cervantes, Paula & Díaz, Antonio & Esparcia, Carlos & Huélamo, Diego, 2022. "The impact of COVID-19 induced panic on stock market returns: A two-year experience," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 1075-1097.
- Sasan Barak & Navid Parvini, 2023. "Transfer‐entropy‐based dynamic feature selection for evaluating Bitcoin price drivers," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(12), pages 1695-1726, December.
- Julien Lachuer & Sami Ben Jabeur, 2022. "Explainable artificial intelligence modeling for corporate social responsibility and financial performance," Journal of Asset Management, Palgrave Macmillan, vol. 23(7), pages 619-630, December.
- Sakemoto, Ryuta, 2021. "Economic Evaluation of Cryptocurrency Investment," MPRA Paper 108283, University Library of Munich, Germany.
- Huang, Yu-ting & Bai, Yu-long & Yu, Qing-he & Ding, Lin & Ma, Yong-jie, 2022. "Application of a hybrid model based on the Prophet model, ICEEMDAN and multi-model optimization error correction in metal price prediction," Resources Policy, Elsevier, vol. 79(C).
- Vasilios Plakandaras & Periklis Gogas & Theophilos Papadimitriou, 2021. "Gold Against the Machine," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 5-28, January.
Printed from https://ideas.repec.org/r/eee/intfor/v35y2019i2p601-615.html