The role of news sentiment in oil futures returns and volatility forecasting: Data-decomposition based deep learning approach
Author
Abstract
Suggested Citation
DOI: 10.1016/j.eneco.2021.105140
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Fenghua Wen & Xin Yang & Xu Gong & Kin Keung Lai, 2017. "Multi-Scale Volatility Feature Analysis and Prediction of Gold Price," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(01), pages 205-223, January.
- Zhao, Lin & Zhang, Xun & Wang, Shouyang & Xu, Shanying, 2016. "The effects of oil price shocks on output and inflation in China," Energy Economics, Elsevier, vol. 53(C), pages 101-110.
- Hao Chen & Qiulan Wan & Yurong Wang, 2014. "Refined Diebold-Mariano Test Methods for the Evaluation of Wind Power Forecasting Models," Energies, MDPI, vol. 7(7), pages 1-14, July.
- Qadan, Mahmoud & Nama, Hazar, 2018. "Investor sentiment and the price of oil," Energy Economics, Elsevier, vol. 69(C), pages 42-58.
- Chuangxia Huang & Xin Yang & Xiaoguang Yang & Hu Sheng, 2014. "An Empirical Study of the Effect of Investor Sentiment on Returns of Different Industries," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-11, April.
- Li, Xuerong & Shang, Wei & Wang, Shouyang, 2019. "Text-based crude oil price forecasting: A deep learning approach," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1548-1560.
- Malcolm Baker & Jeffrey Wurgler, 2007.
"Investor Sentiment in the Stock Market,"
Journal of Economic Perspectives, American Economic Association, vol. 21(2), pages 129-152, Spring.
- Malcolm Baker & Jeffrey Wurgler, 2007. "Investor Sentiment in the Stock Market," NBER Working Papers 13189, National Bureau of Economic Research, Inc.
- Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2008. "Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm," Energy Economics, Elsevier, vol. 30(5), pages 2623-2635, September.
- Bahloul, Walid & Bouri, Abdelfettah, 2016. "Profitability of return and sentiment-based investment strategies in US futures markets," Research in International Business and Finance, Elsevier, vol. 36(C), pages 254-270.
- Zhang, Chuanguo & Tu, Xiaohua, 2016. "The effect of global oil price shocks on China's metal markets," Energy Policy, Elsevier, vol. 90(C), pages 131-139.
- Timothy J. Considine & Donald F. Larson, 2001. "Risk premiums on inventory assets: the case of crude oil and natural gas," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 21(2), pages 109-126, February.
- Lutz Kilian, 2009.
"Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market,"
American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
- Kilian, Lutz, 2006. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," CEPR Discussion Papers 5994, C.E.P.R. Discussion Papers.
- Teterin, Pavel & Brooks, Robert & Enders, Walter, 2016. "Smooth volatility shifts and spillovers in U.S. crude oil and corn futures markets," Journal of Empirical Finance, Elsevier, vol. 38(PA), pages 22-36.
- Ling Tang & Wei Dai & Lean Yu & Shouyang Wang, 2015. "A Novel CEEMD-Based EELM Ensemble Learning Paradigm for Crude Oil Price Forecasting," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 141-169.
- Hamilton, James D. & Wu, Jing Cynthia, 2014.
"Risk premia in crude oil futures prices,"
Journal of International Money and Finance, Elsevier, vol. 42(C), pages 9-37.
- James D. Hamilton & Jing Cynthia Wu, 2013. "Risk Premia in Crude Oil Futures Prices," NBER Working Papers 19056, National Bureau of Economic Research, Inc.
- Bergmeir, Christoph & Hyndman, Rob J. & Benítez, José M., 2016.
"Bagging exponential smoothing methods using STL decomposition and Box–Cox transformation,"
International Journal of Forecasting, Elsevier, vol. 32(2), pages 303-312.
- Christoph Bergmeir & Rob J Hyndman & Jose M Benitez, 2014. "Bagging Exponential Smoothing Methods using STL Decomposition and Box-Cox Transformation," Monash Econometrics and Business Statistics Working Papers 11/14, Monash University, Department of Econometrics and Business Statistics.
- Ding Du & Ronald J Gunderson & Xiaobing Zhao, 2016. "Investor sentiment and oil prices," Journal of Asset Management, Palgrave Macmillan, vol. 17(2), pages 73-88, March.
- Leduc, Sylvain & Sill, Keith, 2004.
"A quantitative analysis of oil-price shocks, systematic monetary policy, and economic downturns,"
Journal of Monetary Economics, Elsevier, vol. 51(4), pages 781-808, May.
- Sylvain Leduc & Keith Sill, 2001. "A quantitative analysis of oil-price shocks, systematic monetary policy, and economic downturns," Working Papers 01-9, Federal Reserve Bank of Philadelphia.
- Paul C. Tetlock & Maytal Saar‐Tsechansky & Sofus Macskassy, 2008. "More Than Words: Quantifying Language to Measure Firms' Fundamentals," Journal of Finance, American Finance Association, vol. 63(3), pages 1437-1467, June.
- L.A. Smales, 2017. "The importance of fear: investor sentiment and stock market returns," Applied Economics, Taylor & Francis Journals, vol. 49(34), pages 3395-3421, July.
- Roache, Shaun K. & Rossi, Marco, 2010. "The effects of economic news on commodity prices," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(3), pages 377-385, August.
- A. Craig MacKinlay, 1997. "Event Studies in Economics and Finance," Journal of Economic Literature, American Economic Association, vol. 35(1), pages 13-39, March.
- Klein, Tony & Walther, Thomas, 2016. "Oil price volatility forecast with mixture memory GARCH," Energy Economics, Elsevier, vol. 58(C), pages 46-58.
- Risse, Marian, 2019. "Combining wavelet decomposition with machine learning to forecast gold returns," International Journal of Forecasting, Elsevier, vol. 35(2), pages 601-615.
- Akhtar, Shumi & Faff, Robert & Oliver, Barry & Subrahmanyam, Avanidhar, 2013. "Reprint of: Stock salience and the asymmetric market effect of consumer sentiment news," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4488-4500.
- Kostopoulos, Dimitrios & Meyer, Steffen & Uhr, Charline, 2020. "Google search volume and individual investor trading," Journal of Financial Markets, Elsevier, vol. 49(C).
- Zhaojie Luo & Xiaojing Cai & Katsuyuki Tanaka & Tetsuya Takiguchi & Takuji Kinkyo & Shigeyuki Hamori, 2019. "Can We Forecast Daily Oil Futures Prices? Experimental Evidence from Convolutional Neural Networks," JRFM, MDPI, vol. 12(1), pages 1-13, January.
- Fan, Ying & Liang, Qiang & Wei, Yi-Ming, 2008. "A generalized pattern matching approach for multi-step prediction of crude oil price," Energy Economics, Elsevier, vol. 30(3), pages 889-904, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
- Zhifang He & Fangzhao Zhou, 2018. "Time-varying and asymmetric effects of the oil-specific demand shock on investor sentiment," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-18, August.
- Lin, Boqiang & Wu, Nan, 2022. "Do heterogeneous oil price shocks really have different effects on earnings management?," International Review of Financial Analysis, Elsevier, vol. 79(C).
- Li, Mingchen & Cheng, Zishu & Lin, Wencan & Wei, Yunjie & Wang, Shouyang, 2023. "What can be learned from the historical trend of crude oil prices? An ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 123(C).
- Tan, Jinghua & Li, Zhixi & Zhang, Chuanhui & Shi, Long & Jiang, Yuansheng, 2024. "A multiscale time-series decomposition learning for crude oil price forecasting," Energy Economics, Elsevier, vol. 136(C).
- Xu Gong & Keqin Guan & Qiyang Chen, 2022. "The role of textual analysis in oil futures price forecasting based on machine learning approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(10), pages 1987-2017, October.
- Jiang, He & Hu, Weiqiang & Xiao, Ling & Dong, Yao, 2022. "A decomposition ensemble based deep learning approach for crude oil price forecasting," Resources Policy, Elsevier, vol. 78(C).
- Zhao, Lu-Tao & Xing, Yue-Yue & Zhao, Qiu-Rong & Chen, Xue-Hui, 2023. "Dynamic impacts of online investor sentiment on international crude oil prices," Resources Policy, Elsevier, vol. 82(C).
- Le, Thai Hong & Luong, Anh Tram, 2022. "Dynamic spillovers between oil price, stock market, and investor sentiment: Evidence from the United States and Vietnam," Resources Policy, Elsevier, vol. 78(C).
- Jin‐Yu Chen & Xue‐Hong Zhu & Mei‐Rui Zhong, 2021. "Time‐varying effects and structural change of oil price shocks on industrial output: Evidence from China's oil industrial chain," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 3460-3472, July.
- Yousaf, Imran & Youssef, Manel & Goodell, John W., 2022. "Quantile connectedness between sentiment and financial markets: Evidence from the S&P 500 twitter sentiment index," International Review of Financial Analysis, Elsevier, vol. 83(C).
- Wang, Yudong & Hao, Xianfeng, 2022. "Forecasting the real prices of crude oil: A robust weighted least squares approach," Energy Economics, Elsevier, vol. 116(C).
- Wang, Lu & Ma, Feng & Niu, Tianjiao & Liang, Chao, 2021. "The importance of extreme shock: Examining the effect of investor sentiment on the crude oil futures market," Energy Economics, Elsevier, vol. 99(C).
- Lin, Ling & Jiang, Yong & Xiao, Helu & Zhou, Zhongbao, 2020. "Crude oil price forecasting based on a novel hybrid long memory GARCH-M and wavelet analysis model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 543(C).
- Yuze Li & Shangrong Jiang & Xuerong Li & Shouyang Wang, 2022. "Hybrid data decomposition-based deep learning for Bitcoin prediction and algorithm trading," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-24, December.
- Xie Haibin & Zhou Mo & Hu Yi & Yu Mei, 2014. "Forecasting the Crude Oil Price with Extreme Values," Journal of Systems Science and Information, De Gruyter, vol. 2(3), pages 193-205, June.
- Yue-Jun Zhang & Shu-Hui Li, 2019. "The impact of investor sentiment on crude oil market risks: evidence from the wavelet approach," Quantitative Finance, Taylor & Francis Journals, vol. 19(8), pages 1357-1371, August.
- Xing, Li-Min & Zhang, Yue-Jun, 2022. "Forecasting crude oil prices with shrinkage methods: Can nonconvex penalty and Huber loss help?," Energy Economics, Elsevier, vol. 110(C).
- Zhang, Yue-Jun & Yao, Ting & He, Ling-Yun & Ripple, Ronald, 2019. "Volatility forecasting of crude oil market: Can the regime switching GARCH model beat the single-regime GARCH models?," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 302-317.
- Sylvain Leduc & Kevin Moran & Robert J. Vigfusson, 2023.
"Learning in the Oil Futures Markets: Evidence and Macroeconomic Implications,"
The Review of Economics and Statistics, MIT Press, vol. 105(2), pages 392-407, March.
- Sylvain Leduc & Kevin Moran & Robert J. Vigfusson, 2016. "Learning in the Oil Futures Markets: Evidence and Macroeconomic Implications," International Finance Discussion Papers 1179, Board of Governors of the Federal Reserve System (U.S.).
- Sylvain Leduc & Kevin Moran & Robert J. Vigfusson, 2020. "Learning in the Oil Futures Markets: Evidence and Macroeconomic Implications," Working Paper Series 2020-33, Federal Reserve Bank of San Francisco.
- Sylvain Leduc & Kevin Moran & Robert J. Vigfusson, 2016. "Learning in the Oil Futures Markets: Evidence and Macroeconomic Implications," CIRANO Working Papers 2016s-53, CIRANO.
More about this item
Keywords
News sentiment; Returns and volatility forecasting; Variational mode decomposition; Deep learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:95:y:2021:i:c:s0140988321000451. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.