IDEAS home Printed from https://ideas.repec.org/a/spr/futbus/v11y2025i1d10.1186_s43093-025-00560-4.html
   My bibliography  Save this article

Unveiling the optimal factor model in Pakistan: a machine learning approach using support vector regression and extreme gradient boosting algorithms

Author

Listed:
  • Rizwan Ullah

    (COMSATS University Islamabad)

  • Muhammad Naveed Jan

    (COMSATS University Islamabad)

  • Muhammad Tahir

    (COMSATS University Islamabad)

Abstract

This study examines the explanatory power of Fama–French models to find the optimal model and pointing out the critical factors applying the grid search cross-validation (GridSearchCV)-based support vector regression (SVR) and extreme gradient boosting (XGBoost) in the Pakistani Stock Market. Data from 1990 to 2022 was collected from DataStream, and 100 test portfolios were formed, bivariate sorted on input factors to ensure accuracy and robustness. ANOVA and Diebold–Mariano tests were applied to pick the best model, while SHAP (SHapley Additive exPlanations) and TreeSHAP analyses identified the significant input factors by using the explainable artificial intelligence (ExP AI). Results reveal a six-factor model outperforms others, while market and size factors are the most influential factors. Opposing to Fama and French five-factor model, the value factor remains vital in the Pakistani equity market, like India and China, while investment factor is the least influential factor. Through the box-plot graphs, robustness was confirmed. The findings recommend investors should prioritize market and size risks, while policymakers should focus on growth of SME’s (small- and medium-size enterprises) and macroeconomic stability to ensure and enhance market efficiency.

Suggested Citation

  • Rizwan Ullah & Muhammad Naveed Jan & Muhammad Tahir, 2025. "Unveiling the optimal factor model in Pakistan: a machine learning approach using support vector regression and extreme gradient boosting algorithms," Future Business Journal, Springer, vol. 11(1), pages 1-20, December.
  • Handle: RePEc:spr:futbus:v:11:y:2025:i:1:d:10.1186_s43093-025-00560-4
    DOI: 10.1186/s43093-025-00560-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s43093-025-00560-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1186/s43093-025-00560-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Fama, Eugene F. & French, Kenneth R., 2017. "International tests of a five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 123(3), pages 441-463.
    2. Basu, Sanjoy, 1983. "The relationship between earnings' yield, market value and return for NYSE common stocks : Further evidence," Journal of Financial Economics, Elsevier, vol. 12(1), pages 129-156, June.
    3. Barillas, Francisco & Kan, Raymond & Robotti, Cesare & Shanken, Jay, 2020. "Model Comparison with Sharpe Ratios," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(6), pages 1840-1874, September.
    4. Li Wang & Ji Zhu, 2010. "Financial market forecasting using a two-step kernel learning method for the support vector regression," Annals of Operations Research, Springer, vol. 174(1), pages 103-120, February.
    5. Aharoni, Gil & Grundy, Bruce & Zeng, Qi, 2013. "Stock returns and the Miller Modigliani valuation formula: Revisiting the Fama French analysis," Journal of Financial Economics, Elsevier, vol. 110(2), pages 347-357.
    6. Ślepaczuk Robert & Zenkova Maryna, 2018. "Robustness of Support Vector Machines in Algorithmic Trading on Cryptocurrency Market," Central European Economic Journal, Sciendo, vol. 5(52), pages 186-205, January.
    7. Banz, Rolf W., 1981. "The relationship between return and market value of common stocks," Journal of Financial Economics, Elsevier, vol. 9(1), pages 3-18, March.
    8. Hwarng, H. Brian, 2001. "Insights into neural-network forecasting of time series corresponding to ARMA(p,q) structures," Omega, Elsevier, vol. 29(3), pages 273-289, June.
    9. John Lintner, 1965. "Security Prices, Risk, And Maximal Gains From Diversification," Journal of Finance, American Finance Association, vol. 20(4), pages 587-615, December.
    10. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    11. Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
    12. Kewei Hou & Chen Xue & Lu Zhang, 2020. "Replicating Anomalies," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2019-2133.
    13. Pushpendu Ghosh & Ariel Neufeld & Jajati Keshari Sahoo, 2020. "Forecasting directional movements of stock prices for intraday trading using LSTM and random forests," Papers 2004.10178, arXiv.org, revised Jun 2021.
    14. Gibbons, Michael R & Ross, Stephen A & Shanken, Jay, 1989. "A Test of the Efficiency of a Given Portfolio," Econometrica, Econometric Society, vol. 57(5), pages 1121-1152, September.
    15. Kent Daniel & David Hirshleifer & Lin Sun, 2020. "Short- and Long-Horizon Behavioral Factors," The Review of Financial Studies, Society for Financial Studies, vol. 33(4), pages 1673-1736.
    16. O. E. Barndorff-Nielsen & P. Reinhard Hansen & A. Lunde & N. Shephard, 2009. "Realized kernels in practice: trades and quotes," Econometrics Journal, Royal Economic Society, vol. 12(3), pages 1-32, November.
    17. Sheraliev Iskandar & Ślepaczuk Robert, 2023. "Cross-Country Differences in Return and Volatility Metrics of World Equity Indices," Central European Economic Journal, Sciendo, vol. 10(57), pages 90-115, January.
    18. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    19. Sami Ben Jabeur & Salma Mefteh-Wali & Jean-Laurent Viviani, 2024. "Forecasting gold price with the XGBoost algorithm and SHAP interaction values," Annals of Operations Research, Springer, vol. 334(1), pages 679-699, March.
    20. Fama, Eugene F & French, Kenneth R, 1992. "The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
    21. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
    22. John H. Cochrane, 2011. "Presidential Address: Discount Rates," Journal of Finance, American Finance Association, vol. 66(4), pages 1047-1108, August.
    23. Ali, Fahad & Ülkü, Numan, 2021. "Quest for a parsimonious factor model in the wake of quality-minus-junk, misvaluation and Fama-French-six factors," Finance Research Letters, Elsevier, vol. 41(C).
    24. J. Tobin, 1958. "Liquidity Preference as Behavior Towards Risk," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 25(2), pages 65-86.
    25. Carhart, Mark M, 1997. "On Persistence in Mutual Fund Performance," Journal of Finance, American Finance Association, vol. 52(1), pages 57-82, March.
    26. Gu, Shihao & Kelly, Bryan & Xiu, Dacheng, 2021. "Autoencoder asset pricing models," Journal of Econometrics, Elsevier, vol. 222(1), pages 429-450.
    27. Keim, Donald B., 1983. "Size-related anomalies and stock return seasonality : Further empirical evidence," Journal of Financial Economics, Elsevier, vol. 12(1), pages 13-32, June.
    28. Kent Daniel & David Hirshleifer & Lin Sun, 2020. "Short- and Long-Horizon Behavioral Factors," Review of Finance, European Finance Association, vol. 33(4), pages 1673-1736.
    29. Tsun Se Cheong & Guanghua Wan & David Kam Hung Chui, 2022. "Unveiling the Relationship between Economic Growth and Equality for Developing Countries," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 30(5), pages 1-28, September.
    30. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    31. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    32. Geert Bekaert & Campbell Harvey & Christian T. Lundblad, 2003. "Equity market liberalization in emerging markets," Review, Federal Reserve Bank of St. Louis, vol. 85(Jul), pages 53-74.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fieberg, Christian & Liedtke, Gerrit & Zaremba, Adam & Cakici, Nusret, 2025. "A factor model for the cross-section of country equity risk premia," Journal of Banking & Finance, Elsevier, vol. 171(C).
    2. Söhnke M. Bartram & Harald Lohre & Peter F. Pope & Ananthalakshmi Ranganathan, 2021. "Navigating the factor zoo around the world: an institutional investor perspective," Journal of Business Economics, Springer, vol. 91(5), pages 655-703, July.
    3. Christian Fieberg & Gerrit Liedtke & Thorsten Poddig, 2025. "Recurrent double-conditional factor model," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 47(1), pages 205-254, March.
    4. Bryzgalova, Svetlana & Huang, Jiantao & Julliard, Christian, 2023. "Bayesian solutions for the factor zoo: we just ran two quadrillion models," LSE Research Online Documents on Economics 126151, London School of Economics and Political Science, LSE Library.
    5. Assoe, Kodjovi & Attig, Najah & Sy, Oumar, 2024. "The battle of factors," Global Finance Journal, Elsevier, vol. 62(C).
    6. Azevedo, Vitor, 2023. "Analysts’ underreaction and momentum strategies," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    7. Mbengue, Mohamed Lamine & Ndiaye, Bara & Sy, Oumar, 2023. "Which factors explain African stock returns?," Finance Research Letters, Elsevier, vol. 54(C).
    8. Cakici, Nusret & Zaremba, Adam, 2022. "Salience theory and the cross-section of stock returns: International and further evidence," Journal of Financial Economics, Elsevier, vol. 146(2), pages 689-725.
    9. Cakici, Nusret & Zaremba, Adam, 2021. "Liquidity and the cross-section of international stock returns," Journal of Banking & Finance, Elsevier, vol. 127(C).
    10. Rocciolo, Francesco & Gheno, Andrea & Brooks, Chris, 2022. "Explaining abnormal returns in stock markets: An alpha-neutral version of the CAPM," International Review of Financial Analysis, Elsevier, vol. 82(C).
    11. Vitor Azevedo & Georg Sebastian Kaiser & Sebastian Mueller, 2023. "Stock market anomalies and machine learning across the globe," Journal of Asset Management, Palgrave Macmillan, vol. 24(5), pages 419-441, September.
    12. Wolfgang Drobetz & Tizian Otto, 2021. "Empirical asset pricing via machine learning: evidence from the European stock market," Journal of Asset Management, Palgrave Macmillan, vol. 22(7), pages 507-538, December.
    13. Liebi, Luca J., 2022. "Is there a value premium in cryptoasset markets?," Economic Modelling, Elsevier, vol. 109(C).
    14. Güler ARAS & İlhan ÇAM & Bilal ZAVALSIZ & Serkan KESKİN, 2018. "Fama-French Çok Faktör Varlık Fiyatlama Modellerinin Performanslarının Karşılaştırılması: Borsa İstanbul Üzerine Bir Uygulama," Istanbul Business Research, Istanbul University Business School, vol. 47(2), pages 183-207, November.
    15. Doha Belimam & Yong Tan & Ghizlane Lakhnati, 2018. "An Empirical Comparison of Asset-Pricing Models in the Shanghai A-Share Exchange Market," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 25(3), pages 249-265, September.
    16. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    17. Paul Handro & Bogdan Dima, 2024. "Analyzing Financial Markets Efficiency: Insights from a Bibliometric and Content Review," Journal of Financial Studies, Institute of Financial Studies, vol. 16(9), pages 119-175, May.
    18. Massimo Guidolin & Manuela Pedio & Dimos Andronoudis, 2019. "How Smart is the Real Estate Smart Beta? Evidence from Optimal Style Factor Strategies for REITs," BAFFI CAREFIN Working Papers 19117, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    19. Hollstein, Fabian, 2022. "The world of anomalies: Smaller than we think?," Journal of International Money and Finance, Elsevier, vol. 129(C).
    20. Ana Belén Alonso-Conde & Javier Rojo-Suárez, 2020. "Nuclear Hazard and Asset Prices: Implications of Nuclear Disasters in the Cross-Sectional Behavior of Stock Returns," Sustainability, MDPI, vol. 12(22), pages 1-24, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:futbus:v:11:y:2025:i:1:d:10.1186_s43093-025-00560-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.