IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v249y2025ipcs0304407624002744.html
   My bibliography  Save this article

Satellites turn “concrete”: Tracking cement with satellite data and neural networks

Author

Listed:
  • d'Aspremont, Alexandre
  • Ben Arous, Simon
  • Bricongne, Jean-Charles
  • Lietti, Benjamin
  • Meunier, Baptiste

Abstract

This paper exploits daily infrared images taken from satellites to track economic activity in advanced and emerging countries. We first develop a framework to read, clean, and exploit satellite images. Our algorithm uses the laws of physics (Planck's law) and machine learning to detect the heat produced by cement plants in activity. This allows us to monitor in real-time whether a cement plant is working. Using this on around 1,000 plants, we construct a satellite-based index. We show that using this satellite index outperforms benchmark models and alternative indicators for nowcasting the production of the cement industry as well as the activity in the construction sector. Comparing across methods, neural networks appear to yield more accurate predictions as they allow to exploit the granularity of our dataset. Overall, combining satellite images and machine learning can help policymakers to take informed and swift economic policy decisions by nowcasting accurately and in real-time economic activity.

Suggested Citation

  • d'Aspremont, Alexandre & Ben Arous, Simon & Bricongne, Jean-Charles & Lietti, Benjamin & Meunier, Baptiste, 2025. "Satellites turn “concrete”: Tracking cement with satellite data and neural networks," Journal of Econometrics, Elsevier, vol. 249(PC).
  • Handle: RePEc:eee:econom:v:249:y:2025:i:pc:s0304407624002744
    DOI: 10.1016/j.jeconom.2024.105923
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407624002744
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2024.105923?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Big data; Data science; Machine learning; Construction; High-frequency data;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
    • E23 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Production
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:249:y:2025:i:pc:s0304407624002744. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.