IDEAS home Printed from https://ideas.repec.org/b/bis/bisifb/59.html
   My bibliography  Save this book

Data science in central banking: applications and tools

Author

Listed:
  • Irving Fisher Committee

Abstract

No abstract is available for this item.

Individual chapters are listed in the "Chapters" tab

Suggested Citation

  • Irving Fisher Committee, 2023. "Data science in central banking: applications and tools," IFC Bulletins, Bank for International Settlements, number 59.
  • Handle: RePEc:bis:bisifb:59
    as

    Download full text from publisher

    File URL: http://www.bis.org/ifc/publ/ifcb59.pdf
    File Function: Full PDF document
    Download Restriction: no

    File URL: http://www.bis.org/ifc/publ/ifcb59.htm
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abe Dunn & Kyle Hood & Alexander Driessen, 2020. "Measuring the Effects of the COVID-19 Pandemic on Consumer Spending Using Card Transaction Data," BEA Working Papers 0174, Bureau of Economic Analysis.
    2. Dario Buono & George Kapetanios & Massimiliano Marcellino & Gianluigi Mazzi & Fotis Papailias, 2018. "Big Data Econometrics: Now Casting and Early Estimates," BAFFI CAREFIN Working Papers 1882, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    3. Galbraith, John W. & Tkacz, Greg, 2015. "Nowcasting GDP with electronic payments data," Statistics Paper Series 10, European Central Bank.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alberto Cavallo, 2024. "Inflation with Covid Consumption Baskets," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 72(2), pages 902-917, June.
    2. Marina Tkalec, 0000. "Inflation response to the COVID-19 pandemic and government interventions: Evidence from EU-27," Proceedings of Economics and Finance Conferences 14216251, International Institute of Social and Economic Sciences.
    3. Mushkudiani Nino, 2018. "Development of Electronic Payments in Georgia," Economics and Culture, Sciendo, vol. 15(2), pages 64-74, December.
    4. Pete Richardson, 2018. "Nowcasting and the Use of Big Data in Short-Term Macroeconomic Forecasting: A Critical Review," Economie et Statistique / Economics and Statistics, Institut National de la Statistique et des Etudes Economiques (INSEE), issue 505-506, pages 65-87.
    5. Kakuho Furukawa & Ryohei Hisano, 2022. "A Nowcasting Model of Exports Using Maritime Big Data," Bank of Japan Working Paper Series 22-E-19, Bank of Japan.
    6. Tut, Daniel, 2023. "FinTech and the COVID-19 pandemic: Evidence from electronic payment systems," Emerging Markets Review, Elsevier, vol. 54(C).
    7. Ksenia Yakovleva, 2018. "Text Mining-based Economic Activity Estimation," Russian Journal of Money and Finance, Bank of Russia, vol. 77(4), pages 26-41, December.
    8. Mantas Lukauskas & Vaida Pilinkienė & Jurgita Bruneckienė & Alina Stundžienė & Andrius Grybauskas & Tomas Ruzgas, 2022. "Economic Activity Forecasting Based on the Sentiment Analysis of News," Mathematics, MDPI, vol. 10(19), pages 1-22, September.
    9. Diego Bodas & Juan R. García López & Tomasa Rodrigo López & Pep Ruiz de Aguirre & Camilo A. Ulloa & Juan Murillo Arias & Juan de Dios Romero Palop & Heribert Valero Lapaz & Matías J. Pacce, 2019. "Measuring retail trade using card transactional data," Working Papers 1921, Banco de España.
    10. Fornaro, Paolo, 2020. "Nowcasting Industrial Production Using Uncoventional Data Sources," ETLA Working Papers 80, The Research Institute of the Finnish Economy.
    11. Roy Verbaan & Wilko Bolt & Carin van der Cruijsen, 2017. "Using debit card payments data for nowcasting Dutch household consumption," DNB Working Papers 571, Netherlands Central Bank, Research Department.
    12. Horvath, Akos & Kay, Benjamin & Wix, Carlo, 2023. "The COVID-19 shock and consumer credit: Evidence from credit card data," Journal of Banking & Finance, Elsevier, vol. 152(C).
    13. Ali B. Barlas & Seda Guler Mert & Berk Orkun Isa & Alvaro Ortiz & Tomasa Rodrigo & Baris Soybilgen & Ege Yazgan, 2021. "Big Data Information and Nowcasting: Consumption and Investment from Bank Transactions in Turkey," Papers 2107.03299, arXiv.org.
    14. Francisco Corona & Graciela Gonz'alez-Far'ias & Jes'us L'opez-P'erez, 2021. "A nowcasting approach to generate timely estimates of Mexican economic activity: An application to the period of COVID-19," Papers 2101.10383, arXiv.org.
    15. Scott R. Baker & Robert A Farrokhnia & Steffen Meyer & Michaela Pagel & Constantine Yannelis, 2023. "Income, Liquidity, and the Consumption Response to the 2020 Economic Stimulus Payments," Review of Finance, European Finance Association, vol. 27(6), pages 2271-2304.
    16. David Kohns & Arnab Bhattacharjee, 2019. "Interpreting Big Data in the Macro Economy: A Bayesian Mixed Frequency Estimator," CEERP Working Paper Series 010, Centre for Energy Economics Research and Policy, Heriot-Watt University.
    17. George Kapetanios & Fotis Papailias, 2022. "Investigating the predictive ability of ONS big data‐based indicators," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 252-258, March.
    18. Kaustubh & Soumya Bhadury & Saurabh Ghosh, 2024. "Reinvigorating Gva Nowcasting In The Postpandemic Period: A Case Study For India," Bulletin of Monetary Economics and Banking, Bank Indonesia, vol. 27(Spesial I), pages 95-130, Februari.

    Book Chapters

    The following chapters of this book are listed in IDEAS

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bis:bisifb:59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Martin Fessler (email available below). General contact details of provider: https://edirc.repec.org/data/bisssch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.