IDEAS home Printed from https://ideas.repec.org/p/dnb/dnbwpp/571.html
   My bibliography  Save this paper

Using debit card payments data for nowcasting Dutch household consumption

Author

Listed:
  • Roy Verbaan
  • Wilko Bolt
  • Carin van der Cruijsen

Abstract

In this paper we analyse whether the use of debit card payments data improves the accuracy of one-quarter ahead forecasts and nowcasts (current-quarter forecasts) of Dutch private household consumption. Since debit card payments data are timely available, they may be a valuable indicator of economic activity. We study a variety of models with payments data and find that a combination of models provides the most accurate nowcast. The best combined model reduces the root mean squared prediction error (RMSPE) by 18% relative to the macroeconomic policy model (DELFI) that is used by the Dutch central bank (DNB). Based on these results for the Netherlands, we conclude that debit card payments data are useful in modelling household consumption.

Suggested Citation

  • Roy Verbaan & Wilko Bolt & Carin van der Cruijsen, 2017. "Using debit card payments data for nowcasting Dutch household consumption," DNB Working Papers 571, Netherlands Central Bank, Research Department.
  • Handle: RePEc:dnb:dnbwpp:571
    as

    Download full text from publisher

    File URL: https://www.dnb.nl/en/binaries/Working%20Paper%20No.%20571_tcm47-363768.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Lola Hernandez & Nicole Jonker & Anneke Kosse, 2017. "Cash versus Debit Card: The Role of Budget Control," Journal of Consumer Affairs, Wiley Blackwell, vol. 51(1), pages 91-112, March.
    2. Bańbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2013. "Now-Casting and the Real-Time Data Flow," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 195-237, Elsevier.
    3. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    4. Troy Gill & Dilhan Perera & David Sunner, 2012. "Electronic Indicators of Economic Activity," RBA Bulletin (Print copy discontinued), Reserve Bank of Australia, pages 1-12, June.
    5. Bolt, Wilko & Jonker, Nicole & van Renselaar, Corry, 2010. "Incentives at the counter: An empirical analysis of surcharging card payments and payment behaviour in the Netherlands," Journal of Banking & Finance, Elsevier, vol. 34(8), pages 1738-1744, August.
    6. Elena Andreou & Eric Ghysels & Andros Kourtellos, 2013. "Should Macroeconomic Forecasters Use Daily Financial Data and How?," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 240-251, April.
    7. Makridakis, Spyros & Hibon, Michele, 2000. "The M3-Competition: results, conclusions and implications," International Journal of Forecasting, Elsevier, vol. 16(4), pages 451-476.
    8. Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
    9. Galbraith, John W. & Tkacz, Greg, 2015. "Nowcasting GDP with electronic payments data," Statistics Paper Series 10, European Central Bank.
    10. Paulo Esteves, 2009. "Are ATM/POS Data Relevant When Nowcasting Private Consumption?," Working Papers w200925, Banco de Portugal, Economics and Research Department.
    11. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    12. Michael T. Owyang & Michelle T. Armesto & Kristie M. Engemann, 2010. "Forecasting with mixed frequencies," Review, Federal Reserve Bank of St. Louis, issue nov, pages 521-536.
    13. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," University of California at Los Angeles, Anderson Graduate School of Management qt9mf223rs, Anderson Graduate School of Management, UCLA.
    14. Scott Schuh, 2017. "Measuring consumer expenditures with payment diaries," Working Papers 17-2, Federal Reserve Bank of Boston, revised 20 Jan 2017.
    15. Duarte, Cláudia & Rodrigues, Paulo M.M. & Rua, António, 2017. "A mixed frequency approach to the forecasting of private consumption with ATM/POS data," International Journal of Forecasting, Elsevier, vol. 33(1), pages 61-75.
    16. John W. Galbraith & Greg Tkacz, 2013. "Analyzing Economic Effects of September 11 and Other Extreme Events Using Debit and Payments System Data," Canadian Public Policy, University of Toronto Press, vol. 39(1), pages 119-134, March.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Nowcasting; debit card payments; household consumption; Midas;

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dnb:dnbwpp:571. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Richard Heuver). General contact details of provider: http://edirc.repec.org/data/dnbgvnl.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.