IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v50y2023i3p1116-1151.html
   My bibliography  Save this article

Bayesian inverse problems with heterogeneous variance

Author

Listed:
  • Natalia Bochkina
  • Jenovah Rodrigues

Abstract

We consider inverse problems in Hilbert spaces under correlated Gaussian noise, and use a Bayesian approach to find their regularized solution. We focus on mildly ill‐posed inverse problems with fractional noise, using a novel wavelet‐based vaguelette–vaguelette approach. It allows us to apply sequence space methods without assuming that all operators are simultaneously diagonalizable. The results are proved for more general bases and covariance operators. Our primary aim is to study posterior contraction rate in such inverse problems over Sobolev classes and compare it to the derived minimax rate. Secondly, we study effect of plugging in a consistent estimator of variances in sequence space on the posterior contraction rate. This result is applied to the problem with error in forward operator. Thirdly, we show that empirical Bayes posterior distribution with a plugged‐in maximum marginal likelihood estimator of the prior scale contracts at the optimal rate, adaptively, in the minimax sense.

Suggested Citation

  • Natalia Bochkina & Jenovah Rodrigues, 2023. "Bayesian inverse problems with heterogeneous variance," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(3), pages 1116-1151, September.
  • Handle: RePEc:bla:scjsta:v:50:y:2023:i:3:p:1116-1151
    DOI: 10.1111/sjos.12622
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12622
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12622?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:50:y:2023:i:3:p:1116-1151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.