IDEAS home Printed from
   My bibliography  Save this paper

Wavelet Analysis and Denoising: New Tools for Economists


  • Iolanda Lo Cascio

    (Queen Mary, University of London)


This paper surveys the techniques of wavelets analysis and the associated methods of denoising. The Discrete Wavelet Transform and its undecimated version, the Maximum Overlapping Discrete Wavelet Transform, are described. The methods of wavelets analysis can be used to show how the frequency content of the data varies with time. This allows us to pinpoint in time such events as major structural breaks. The sparse nature of the wavelets representation also facilitates the process of noise reduction by nonlinear wavelet shrinkage , which can be used to reveal the underlying trends in economic data. An application of these techniques to the UK real GDP (1873-2001) is described. The purpose of the analysis is to reveal the true structure of the data - including its local irregularities and abrupt changes - and the results are surprising.

Suggested Citation

  • Iolanda Lo Cascio, 2007. "Wavelet Analysis and Denoising: New Tools for Economists," Working Papers 600, Queen Mary University of London, School of Economics and Finance.
  • Handle: RePEc:qmw:qmwecw:wp600

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Nelson, Charles R & Kang, Heejoon, 1981. "Spurious Periodicity in Inappropriately Detrended Time Series," Econometrica, Econometric Society, vol. 49(3), pages 741-751, May.
    2. Pollock, D S G, 2001. "Filters for Short Non-stationary Sequences," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(5), pages 341-355, August.
    3. João Valle e Azevedo, 2002. "Business Cycles: Cyclical Comovement Within the European Union in the Period 1960-1999. A Frequency Domain Approach," Working Papers w200205, Banco de Portugal, Economics and Research Department.
    4. Marianne Baxter & Robert G. King, 1999. "Measuring Business Cycles: Approximate Band-Pass Filters For Economic Time Series," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 575-593, November.
    5. King, Robert G. & Rebelo, Sergio T., 1993. "Low frequency filtering and real business cycles," Journal of Economic Dynamics and Control, Elsevier, vol. 17(1-2), pages 207-231.
    6. Michael Artis & Massimiliano Marcellino & Tommaso Proietti, 2004. "Dating Business Cycles: A Methodological Contribution with an Application to the Euro Area," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 66(4), pages 537-565, September.
    7. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    8. J. M. Marriott & J. C. Naylor & A. R. Tremayne, 2003. "Exploring economic time series: a Bayesian graphical approach," Econometrics Journal, Royal Economic Society, vol. 6(1), pages 124-145, June.
    9. Elena Andreou & Aris Spanos, 2003. "Statistical Adequacy and the Testing of Trend Versus Difference Stationarity," Econometric Reviews, Taylor & Francis Journals, vol. 22(3), pages 217-237, January.
    10. Arthur F. Burns & Wesley C. Mitchell, 1946. "Measuring Business Cycles," NBER Books, National Bureau of Economic Research, Inc, number burn46-1, January.
    11. Pollock, D. S. G., 2000. "Trend estimation and de-trending via rational square-wave filters," Journal of Econometrics, Elsevier, vol. 99(2), pages 317-334, December.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Berger, Theo, 2015. "A wavelet based approach to measure and manage contagion at different time scales," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 338-350.

    More about this item


    Wavelets; Denoising; Structural breaks; Trend estimation;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qmw:qmwecw:wp600. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nicholas Owen). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.