IDEAS home Printed from https://ideas.repec.org/p/azt/cemmap/71-13.html
   My bibliography  Save this paper

Comparison and anti-concentration bounds for maxima of Gaussian random vectors

Author

Listed:
  • Victor Chernozhukov
  • Denis Chetverikov
  • Kengo Kato

Abstract

Slepian and Sudakov-Fernique type inequalities, which compare expectations of maxima of Gaussian random vectors under certain restrictions on the covariance matrices, play an important role in the probability theory, especially in empirical process and extreme value theories. Here we give explicit comparisons of expectations of smooth functions and distribution functions of maxima of Gaussian random vectors without any restriction on the covariance matrices. We also establish an anti-concentration inequality for maxima of Gaussian random vectors, which derives a useful upper bound on the Lévy concentration function for the maximum of (not necessarily independent) Gaussian random variables. The bound is universal and applies to vectors with arbitrary covariance matrices. This anti-concentration inequality plays a crucial role in establishing bounds on the Kolmogorov distance between maxima of Gaussian random vectors. These results have immediate applications in mathematical statistics. As an example of application, we establish a conditional multiplier central limit theorem for maxima of sums of independent random vectors where the dimension of the vectors is possibly much larger than the sample size.

Suggested Citation

  • Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Comparison and anti-concentration bounds for maxima of Gaussian random vectors," CeMMAP working papers 71/13, Institute for Fiscal Studies.
  • Handle: RePEc:azt:cemmap:71/13
    DOI: 10.1920/wp.cem.2013.7113
    as

    Download full text from publisher

    File URL: https://www.cemmap.ac.uk/wp-content/uploads/2020/08/CWP7113.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.1920/wp.cem.2013.7113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Anti-concentration and honest, adaptive confidence bands," CeMMAP working papers CWP69/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012. "Central limit theorems and multiplier bootstrap when p is much larger than n," CeMMAP working papers CWP45/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Liqing Yan, 2009. "Comparison Inequalities for One Sided Normal Probabilities," Journal of Theoretical Probability, Springer, vol. 22(4), pages 827-836, December.
    4. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012. "Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors," Papers 1212.6906, arXiv.org, revised Jan 2018.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Testing Many Moment Inequalities," CeMMAP working papers 65/13, Institute for Fiscal Studies.
    2. Liang, Chong & Schienle, Melanie, 2019. "Determination of vector error correction models in high dimensions," Journal of Econometrics, Elsevier, vol. 208(2), pages 418-441.
    3. Andrews, Donald W.K. & Shi, Xiaoxia, 2017. "Inference based on many conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 196(2), pages 275-287.
    4. Demian Pouzo, 2014. "Bootstrap Consistency for Quadratic Forms of Sample Averages with Increasing Dimension," Papers 1411.2701, arXiv.org, revised Aug 2015.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Testing Many Moment Inequalities," CeMMAP working papers 65/13, Institute for Fiscal Studies.
    2. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey, 2016. "Double machine learning for treatment and causal parameters," CeMMAP working papers 49/16, Institute for Fiscal Studies.
    3. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2014. "Central limit theorems and bootstrap in high dimensions," CeMMAP working papers CWP49/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Hidalgo, Javier & Schafgans, Marcia, 2017. "Inference and testing breaks in large dynamic panels with strong cross sectional dependence," Journal of Econometrics, Elsevier, vol. 196(2), pages 259-274.
    6. Mayya Zhilova, 2015. "Simultaneous likelihood-based bootstrap confidence sets for a large number of models," SFB 649 Discussion Papers SFB649DP2015-031, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    7. Victor Chernozhukov & Chris Hansen & Martin Spindler, 2016. "hdm: High-Dimensional Metrics," Papers 1608.00354, arXiv.org.
    8. Vladimir Spokoiny & Mayya Zhilova, 2014. "Bootstrap confidence sets under model misspecification," SFB 649 Discussion Papers SFB649DP2014-067, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    9. Hansen, Christian & Liao, Yuan, 2019. "The Factor-Lasso And K-Step Bootstrap Approach For Inference In High-Dimensional Economic Applications," Econometric Theory, Cambridge University Press, vol. 35(3), pages 465-509, June.
    10. Denis Kojevnikov, 2021. "The Bootstrap for Network Dependent Processes," Papers 2101.12312, arXiv.org.
    11. Yukun Ma, 2023. "Identification-robust inference for the LATE with high-dimensional covariates," Papers 2302.09756, arXiv.org, revised Nov 2023.
    12. Pasha Andreyanov & Grigory Franguridi, 2021. "Nonparametric inference on counterfactuals in first-price auctions," Papers 2106.13856, arXiv.org, revised Jun 2022.
    13. Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Valid Post-Selection and Post-Regularization Inference: An Elementary, General Approach," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 649-688, August.
    14. Jinyuan Chang & Wen Zhou & Wen-Xin Zhou & Lan Wang, 2017. "Comparing large covariance matrices under weak conditions on the dependence structure and its application to gene clustering," Biometrics, The International Biometric Society, vol. 73(1), pages 31-41, March.
    15. Shengchun Kong & Zhuqing Yu & Xianyang Zhang & Guang Cheng, 2021. "High‐dimensional robust inference for Cox regression models using desparsified Lasso," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 1068-1095, September.
    16. Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Post-Selection and Post-Regularization Inference in Linear Models with Many Controls and Instruments," American Economic Review, American Economic Association, vol. 105(5), pages 486-490, May.
    17. Magne Mogstad & Joseph P. Romano & Azeem Shaikh & Daniel Wilhelm, 2020. "Inference for Ranks with Applications to Mobility across Neighborhoods and Academic Achievement across Countries," NBER Working Papers 26883, National Bureau of Economic Research, Inc.
    18. Alexandre Belloni & Victor Chernozhukov & Ying Wei, 2016. "Post-Selection Inference for Generalized Linear Models With Many Controls," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 606-619, October.
    19. Brice Ozenne & Esben Budtz-Jørgensen & Sebastian Elgaard Ebert, 2023. "Controlling the familywise error rate when performing multiple comparisons in a linear latent variable model," Computational Statistics, Springer, vol. 38(1), pages 1-23, March.
    20. Matias D. Cattaneo & Ricardo P. Masini & William G. Underwood, 2022. "Yurinskii's Coupling for Martingales," Papers 2210.00362, arXiv.org, revised Mar 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:azt:cemmap:71/13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dermot Watson (email available below). General contact details of provider: https://edirc.repec.org/data/ifsssuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.