IDEAS home Printed from https://ideas.repec.org/p/cty/dpaper/09-06.html
   My bibliography  Save this paper

Instrumental variables quantile regression for panel data with measurement errors

Author

Listed:
  • Galvao Jr, A. F.
  • Montes-Rojas, G.

Abstract

This paper develops an instrumental variables estimator for quantile regression in panel data with fixed effects. Asymptotic properties of the instrumental variables estimator are studied for large N and T when Na/T ! 0, for some a > 0. Wald and Kolmogorov-Smirnov type tests for general linear restrictions are developed. The estimator is applied to the problem of measurement errors in variables, which induces endogeneity and as a result bias in the model. We derive an approximation to the bias in the quantile regression fixed effects estimator in the presence of measurement error and show its connection to similar effects in standard least squares models. Monte Carlo simulations are conducted to evaluate the finite sample properties of the estimator in terms of bias and root mean squared error. Finally, the methods are applied to a model of firm investment. The results show interesting heterogeneity in the Tobin’s q and cash flow sensitivities of investment. In both cases, the sensitivities are monotonically increasing along the quantiles.

Suggested Citation

  • Galvao Jr, A. F. & Montes-Rojas, G., 2009. "Instrumental variables quantile regression for panel data with measurement errors," Working Papers 09/06, Department of Economics, City University London.
  • Handle: RePEc:cty:dpaper:09/06
    as

    Download full text from publisher

    File URL: http://openaccess.city.ac.uk/id/eprint/1496/1/Instrumental_Variables_Quantile_Regression.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Timothy Erickson & Toni M. Whited, 2000. "Measurement Error and the Relationship between Investment and q," Journal of Political Economy, University of Chicago Press, vol. 108(5), pages 1027-1057, October.
    2. Wansbeek, Tom, 2001. "GMM estimation in panel data models with measurement error," Journal of Econometrics, Elsevier, vol. 104(2), pages 259-268, September.
    3. Susanne M. Schennach, 2004. "Estimation of Nonlinear Models with Measurement Error," Econometrica, Econometric Society, vol. 72(1), pages 33-75, January.
    4. Powell, James L., 1986. "Censored regression quantiles," Journal of Econometrics, Elsevier, vol. 32(1), pages 143-155, June.
    5. Griliches, Zvi & Hausman, Jerry A., 1986. "Errors in variables in panel data," Journal of Econometrics, Elsevier, vol. 31(1), pages 93-118, February.
    6. Abrevaya, Jason & Dahl, Christian M, 2008. "The Effects of Birth Inputs on Birthweight," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 379-397.
    7. Joshua Angrist & Victor Chernozhukov & Iván Fernández-Val, 2006. "Quantile Regression under Misspecification, with an Application to the U.S. Wage Structure," Econometrica, Econometric Society, vol. 74(2), pages 539-563, March.
    8. Jinyong Hahn & Guido Kuersteiner, 2002. "Asymptotically Unbiased Inference for a Dynamic Panel Model with Fixed Effects when Both "n" and "T" Are Large," Econometrica, Econometric Society, vol. 70(4), pages 1639-1657, July.
    9. Schennach, Susanne M., 2008. "Quantile Regression With Mismeasured Covariates," Econometric Theory, Cambridge University Press, vol. 24(4), pages 1010-1043, August.
    10. Blundell, Richard & Bond, Stephen & Devereux, Michael & Schiantarelli, Fabio, 1992. "Investment and Tobin's Q: Evidence from company panel data," Journal of Econometrics, Elsevier, vol. 51(1-2), pages 233-257.
    11. Chernozhukov, Victor & Hansen, Christian, 2008. "Instrumental variable quantile regression: A robust inference approach," Journal of Econometrics, Elsevier, vol. 142(1), pages 379-398, January.
    12. Bester, C. Alan & Hansen, Christian, 2009. "A Penalty Function Approach to Bias Reduction in Nonlinear Panel Models with Fixed Effects," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(2), pages 131-148.
    13. Chamberlain, Gary, 1982. "Multivariate regression models for panel data," Journal of Econometrics, Elsevier, vol. 18(1), pages 5-46, January.
    14. repec:bla:stanee:v:45:y:1991:i:2:p:85-92 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ozan Bakis & Nurhan Davutyan & Haluk Levent & Sezgin Polat, 2010. "External Returns to Higher Education in Turkey," Working Papers 517, Economic Research Forum, revised 04 Jan 2010.
    2. Matano, Alessia & Naticchioni, Paolo, 2013. "Rent sharing as a driver of the glass ceiling effect," Economics Letters, Elsevier, vol. 118(1), pages 55-59.
    3. Andini, Corrado & Andini, Monica, 2015. "A Note on Unemployment Persistence and Quantile Parameter Heterogeneity," IZA Discussion Papers 8819, Institute of Labor Economics (IZA).
    4. Alessia Matano & Paolo Naticchioni, 2009. "Wage distribution and the spatial sorting of workers and firms," Working Papers - Dipartimento di Economia 8-DEISFOL, Dipartimento di Economia, Sapienza University of Rome, revised 2009.
    5. repec:wsi:medjxx:v:05:y:2013:i:03:n:s179381201350017x is not listed on IDEAS
    6. Daniel Wilhelm, 2015. "Identification and estimation of nonparametric panel data regressions with measurement error," CeMMAP working papers CWP34/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Ozan Bakis & Nurhan Davutyan & Haluk Levent & Sezgin Polat, 2013. "Quantile Estimates For Social Returns To Education In Turkey: 2006–2009," Middle East Development Journal (MEDJ), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-23.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cty:dpaper:09/06. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Research Publications Librarian). General contact details of provider: http://edirc.repec.org/data/decituk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.