IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/1444.html
   My bibliography  Save this paper

Can One Estimate the Conditional Distribution of Post-Model-Selection Estimators?

Author

Listed:

Abstract

We consider the problem of estimating the conditional distribution of a post-model-selection estimator where the conditioning is on the selected model. The notion of a post-model-selection estimator here refers to the combined procedure resulting from first selecting a model (e.g., by a model selection criterion like AIC or by a hypothesis testing procedure) and second estimating the parameters in the selected model (e.g., by least-squares or maximum likelihood), all based on the same data set. We show that it is impossible to estimate this distribution with reasonable accuracy even asymptotically. In particular, we show that no estimator for this distribution can be uniformly consistent (not even locally). This follows as a corollary to (local) minimax lower bounds on the performance of estimators for this distribution. Similar impossibility results are also obtained for the conditional distribution of linear functions (e.g., predictors) of the post-model-selection estimator.

Suggested Citation

  • Hannes Leeb & Benedikt M. Potscher, 2003. "Can One Estimate the Conditional Distribution of Post-Model-Selection Estimators?," Cowles Foundation Discussion Papers 1444, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:1444
    as

    Download full text from publisher

    File URL: https://cowles.yale.edu/sites/default/files/files/pub/d14/d1444.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Diebold, F.X. & Kilian, L. & Nerlove, Marc, 2006. "Time Series Analysis," Working Papers 28556, University of Maryland, Department of Agricultural and Resource Economics.
    2. Brownstone, David, 1990. "Bootstrapping improved estimators for linear regression models," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 171-187.
    3. repec:cup:etheor:v:11:y:1995:i:3:p:537-49 is not listed on IDEAS
    4. Leeb, Hannes & Pötscher, Benedikt M., 2008. "Can One Estimate The Unconditional Distribution Of Post-Model-Selection Estimators?," Econometric Theory, Cambridge University Press, vol. 24(2), pages 338-376, April.
    5. Hjort N.L. & Claeskens G., 2003. "Frequentist Model Average Estimators," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 879-899, January.
    6. Hannes Leeb, 2006. "The distribution of a linear predictor after model selection: Unconditional finite-sample distributions and asymptotic approximations," Papers math/0611186, arXiv.org.
    7. Kapetanios, George, 2001. "Incorporating lag order selection uncertainty in parameter inference for AR models," Economics Letters, Elsevier, vol. 72(2), pages 137-144, August.
    8. Kabaila, Paul, 1995. "The Effect of Model Selection on Confidence Regions and Prediction Regions," Econometric Theory, Cambridge University Press, vol. 11(3), pages 537-549, June.
    9. Pötscher, B.M., 1991. "Effects of Model Selection on Inference," Econometric Theory, Cambridge University Press, vol. 7(2), pages 163-185, June.
    10. Leeb, Hannes & Pötscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 21-59, February.
    11. Danilov, Dmitry & Magnus, J.R.Jan R., 2004. "On the harm that ignoring pretesting can cause," Journal of Econometrics, Elsevier, vol. 122(1), pages 27-46, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pötscher, Benedikt M., 2006. "The Distribution of Model Averaging Estimators and an Impossibility Result Regarding Its Estimation," MPRA Paper 73, University Library of Munich, Germany, revised Jul 2006.
    2. Phillips, Peter C.B., 2005. "Automated Discovery In Econometrics," Econometric Theory, Cambridge University Press, vol. 21(1), pages 3-20, February.
    3. Liu, Chu-An, 2015. "Distribution theory of the least squares averaging estimator," Journal of Econometrics, Elsevier, vol. 186(1), pages 142-159.
    4. Magnus, Jan R. & Wan, Alan T.K. & Zhang, Xinyu, 2011. "Weighted average least squares estimation with nonspherical disturbances and an application to the Hong Kong housing market," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1331-1341, March.
    5. Pötscher, Benedikt M. & Leeb, Hannes, 2009. "On the distribution of penalized maximum likelihood estimators: The LASSO, SCAD, and thresholding," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2065-2082, October.
    6. Wan, Alan T.K. & Zhang, Xinyu & Zou, Guohua, 2010. "Least squares model averaging by Mallows criterion," Journal of Econometrics, Elsevier, vol. 156(2), pages 277-283, June.
    7. Doppelhofer, G. & Weeks, M., 2005. "Jointness of Growth Determinants," Cambridge Working Papers in Economics 0542, Faculty of Economics, University of Cambridge.
    8. Liu, Chu-An, 2012. "A plug-in averaging estimator for regressions with heteroskedastic errors," MPRA Paper 41414, University Library of Munich, Germany.
    9. Gernot Doppelhofer & Xavier Sala I Martin & Melvyn Weeks, 2005. "Jointness of Determinants of Economics Growth," Money Macro and Finance (MMF) Research Group Conference 2005 54, Money Macro and Finance Research Group.
    10. Leeb, Hannes & Potscher, Benedikt M., 2008. "Sparse estimators and the oracle property, or the return of Hodges' estimator," Journal of Econometrics, Elsevier, vol. 142(1), pages 201-211, January.
    11. Pötscher, Benedikt M. & Schneider, Ulrike, 2007. "On the distribution of the adaptive LASSO estimator," MPRA Paper 6913, University Library of Munich, Germany.
    12. Andrews, Donald W.K. & Cheng, Xu & Guggenberger, Patrik, 2020. "Generic results for establishing the asymptotic size of confidence sets and tests," Journal of Econometrics, Elsevier, vol. 218(2), pages 496-531.
    13. Leeb, Hannes & Pötscher, Benedikt M. & Ewald, Karl, 2014. "On various confidence intervals post-model-selection," MPRA Paper 58326, University Library of Munich, Germany, revised 2014.
    14. Schomaker, Michael & Wan, Alan T.K. & Heumann, Christian, 2010. "Frequentist Model Averaging with missing observations," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3336-3347, December.
    15. Wan, Alan T.K. & Zhang, Xinyu & Wang, Shouyang, 2014. "Frequentist model averaging for multinomial and ordered logit models," International Journal of Forecasting, Elsevier, vol. 30(1), pages 118-128.
    16. Pötscher, Benedikt M., 2007. "Confidence Sets Based on Sparse Estimators Are Necessarily Large," MPRA Paper 5677, University Library of Munich, Germany.
    17. Schomaker, Michael & Heumann, Christian, 2014. "Model selection and model averaging after multiple imputation," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 758-770.
    18. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2019. "Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 749-758, April.
    19. Donald W. K. Andrews & Xiaoxia Shi, 2013. "Inference Based on Conditional Moment Inequalities," Econometrica, Econometric Society, vol. 81(2), pages 609-666, March.
    20. Kascha, Christian & Trenkler, Carsten, 2011. "Bootstrapping the likelihood ratio cointegration test in error correction models with unknown lag order," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 1008-1017, February.

    More about this item

    Keywords

    Inference after model selection; Post-model-selection estimator; Pre-test estimator; Selection of regressors; Akaikeis information criterion AIC; Model uncertainty; Consistency; Uniform consistency; Lower risk bound;
    All these keywords.

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1444. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Matthew Regan (email available below). General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.