IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/58326.html
   My bibliography  Save this paper

On various confidence intervals post-model-selection

Author

Listed:
  • Leeb, Hannes
  • Pötscher, Benedikt M.
  • Ewald, Karl

Abstract

We compare several confidence intervals after model selection in the setting recently studied by Berk et al. (2013), where the goal is to cover not the true parameter but a certain non-standard quantity of interest that depends on the selected model. In particular, we compare the PoSI-intervals that are proposed in that reference with the `naive' confidence interval, which is constructed as if the selected model were correct and fixed a-priori (thus ignoring the presence of model selection). Overall, we find that the actual coverage probabilities of all these intervals deviate only moderately from the desired nominal coverage probability. This finding is in stark contrast to several papers in the existing literature, where the goal is to cover the true parameter.

Suggested Citation

  • Leeb, Hannes & Pötscher, Benedikt M. & Ewald, Karl, 2014. "On various confidence intervals post-model-selection," MPRA Paper 58326, University Library of Munich, Germany, revised 2014.
  • Handle: RePEc:pra:mprapa:58326
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/58326/9/MPRA_paper_58325.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Paul Kabaila, 2009. "The Coverage Properties of Confidence Regions After Model Selection," International Statistical Review, International Statistical Institute, vol. 77(3), pages 405-414, December.
    2. Pötscher, Benedikt M. & Schneider, Ulrike, 2007. "On the distribution of the adaptive LASSO estimator," MPRA Paper 6913, University Library of Munich, Germany.
    3. Pötscher, Benedikt M. & Schneider, Ulrike, 2008. "Confidence sets based on penalized maximum likelihood estimators," MPRA Paper 9062, University Library of Munich, Germany.
    4. Leeb, Hannes & Pötscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 21-59, February.
    5. Kabaila, Paul, 1998. "Valid Confidence Intervals In Regression After Variable Selection," Econometric Theory, Cambridge University Press, vol. 14(4), pages 463-482, August.
    6. Pötscher, Benedikt M. & Leeb, Hannes, 2009. "On the distribution of penalized maximum likelihood estimators: The LASSO, SCAD, and thresholding," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2065-2082, October.
    7. Pötscher, Benedikt M. & Schneider, Ulrike, 2011. "Distributional results for thresholding estimators in high-dimensional Gaussian regression models," MPRA Paper 31882, University Library of Munich, Germany.
    8. Leeb, Hannes & Pötscher, Benedikt M., 2008. "Can One Estimate The Unconditional Distribution Of Post-Model-Selection Estimators?," Econometric Theory, Cambridge University Press, vol. 24(2), pages 338-376, April.
    9. Kabaila, Paul & Leeb, Hannes, 2006. "On the Large-Sample Minimal Coverage Probability of Confidence Intervals After Model Selection," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 619-629, June.
    10. Pötscher, Benedikt M., 2006. "The Distribution of Model Averaging Estimators and an Impossibility Result Regarding Its Estimation," MPRA Paper 73, University Library of Munich, Germany, revised Jul 2006.
    11. Leeb, Hannes & Pötscher, Benedikt M., 2003. "The Finite-Sample Distribution Of Post-Model-Selection Estimators And Uniform Versus Nonuniform Approximations," Econometric Theory, Cambridge University Press, vol. 19(1), pages 100-142, February.
    12. Pötscher, B.M., 1991. "Effects of Model Selection on Inference," Econometric Theory, Cambridge University Press, vol. 7(2), pages 163-185, June.
    13. Donald W. K. Andrews & Patrik Guggenberger, 2009. "Hybrid and Size-Corrected Subsampling Methods," Econometrica, Econometric Society, vol. 77(3), pages 721-762, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McCloskey, Adam, 2017. "Bonferroni-based size-correction for nonstandard testing problems," Journal of Econometrics, Elsevier, vol. 200(1), pages 17-35.
    2. Liu, Chu-An, 2015. "Distribution theory of the least squares averaging estimator," Journal of Econometrics, Elsevier, vol. 186(1), pages 142-159.
    3. Pötscher, Benedikt M. & Leeb, Hannes, 2009. "On the distribution of penalized maximum likelihood estimators: The LASSO, SCAD, and thresholding," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2065-2082, October.
    4. Leeb, Hannes & Pötscher, Benedikt M. & Kivaranovic, Danijel, 2018. "Comment on "Model Confidence Bounds for Variable Selection" by Yang Li, Yuetian Luo, Davide Ferrari, Xiaonan Hu, and Yichen Qin," MPRA Paper 90655, University Library of Munich, Germany.
    5. Pötscher, Benedikt M. & Schneider, Ulrike, 2007. "On the distribution of the adaptive LASSO estimator," MPRA Paper 6913, University Library of Munich, Germany.
    6. Ruth M. Pfeiffer & Andrew Redd & Raymond J. Carroll, 2017. "On the impact of model selection on predictor identification and parameter inference," Computational Statistics, Springer, vol. 32(2), pages 667-690, June.
    7. Pötscher, Benedikt M., 2007. "Confidence Sets Based on Sparse Estimators Are Necessarily Large," MPRA Paper 5677, University Library of Munich, Germany.
    8. Wan, Alan T.K. & Zhang, Xinyu & Zou, Guohua, 2010. "Least squares model averaging by Mallows criterion," Journal of Econometrics, Elsevier, vol. 156(2), pages 277-283, June.
    9. Leeb, Hannes & Pötscher, Benedikt M., 2012. "Testing in the Presence of Nuisance Parameters: Some Comments on Tests Post-Model-Selection and Random Critical Values," MPRA Paper 41459, University Library of Munich, Germany.
    10. Liu, Chu-An, 2012. "A plug-in averaging estimator for regressions with heteroskedastic errors," MPRA Paper 41414, University Library of Munich, Germany.
    11. Pötscher, Benedikt M., 2006. "The Distribution of Model Averaging Estimators and an Impossibility Result Regarding Its Estimation," MPRA Paper 73, University Library of Munich, Germany, revised Jul 2006.
    12. Schomaker, Michael & Heumann, Christian, 2014. "Model selection and model averaging after multiple imputation," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 758-770.
    13. Hassler, Uwe, 2010. "Testing regression coefficients after model selection through sign restrictions," Economics Letters, Elsevier, vol. 107(2), pages 220-223, May.
    14. Kascha, Christian & Trenkler, Carsten, 2011. "Bootstrapping the likelihood ratio cointegration test in error correction models with unknown lag order," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 1008-1017, February.
    15. Firmin Doko Tchatoka & Wenjie Wang, 2020. "Uniform Inference after Pretesting for Exogeneity," School of Economics Working Papers 2020-05, University of Adelaide, School of Economics.
    16. Leeb, Hannes & Pötscher, Benedikt M., 2008. "Can One Estimate The Unconditional Distribution Of Post-Model-Selection Estimators?," Econometric Theory, Cambridge University Press, vol. 24(2), pages 338-376, April.
    17. Paul Kabaila, 2009. "The Coverage Properties of Confidence Regions After Model Selection," International Statistical Review, International Statistical Institute, vol. 77(3), pages 405-414, December.
    18. Matei Demetrescu & Uwe Hassler & Vladimir Kuzin, 2011. "Pitfalls of post-model-selection testing: experimental quantification," Empirical Economics, Springer, vol. 40(2), pages 359-372, April.
    19. Karthik Muralidharan & Mauricio Romero & Kaspar Wüthrich, 2019. "Factorial Designs, Model Selection, and (Incorrect) Inference in Randomized Experiments," NBER Working Papers 26562, National Bureau of Economic Research, Inc.
    20. Ulrike Schneider, 2016. "Confidence Sets Based on Thresholding Estimators in High-Dimensional Gaussian Regression Models," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1412-1455, December.

    More about this item

    Keywords

    Confidence intervals; model selection;

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:58326. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.