IDEAS home Printed from
   My bibliography  Save this paper

Distributional results for thresholding estimators in high-dimensional Gaussian regression models


  • Pötscher, Benedikt M.
  • Schneider, Ulrike


We study the distribution of hard-, soft-, and adaptive soft-thresholding estimators within a linear regression model where the number of parameters k can depend on sample size n and may diverge with n. In addition to the case of known error-variance, we define and study versions of the estimators when the error-variance is unknown. We derive the finite-sample distribution of each estimator and study its behavior in the large-sample limit, also investigating the effects of having to estimate the variance when the degrees of freedom n-k does not tend to infinity or tends to infinity very slowly. Our analysis encompasses both the case where the estimators are tuned to perform consistent model selection and the case where the estimators are tuned to perform conservative model selection. Furthermore, we discuss consistency, uniform consistency and derive the minimax rate under either type of tuning.

Suggested Citation

  • Pötscher, Benedikt M. & Schneider, Ulrike, 2011. "Distributional results for thresholding estimators in high-dimensional Gaussian regression models," MPRA Paper 31882, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:31882

    Download full text from publisher

    File URL:
    File Function: original version
    Download Restriction: no

    File URL:
    File Function: revised version
    Download Restriction: no

    File URL:
    File Function: revised version
    Download Restriction: no

    References listed on IDEAS

    1. Leeb, Hannes & Potscher, Benedikt M., 2008. "Sparse estimators and the oracle property, or the return of Hodges' estimator," Journal of Econometrics, Elsevier, vol. 142(1), pages 201-211, January.
    2. Leeb, Hannes & P tscher, Benedikt M., 2003. "The Finite-Sample Distribution Of Post-Model-Selection Estimators And Uniform Versus Nonuniform Approximations," Econometric Theory, Cambridge University Press, vol. 19(01), pages 100-142, February.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Leeb, Hannes & Pötscher, Benedikt M. & Ewald, Karl, 2014. "On various confidence intervals post-model-selection," MPRA Paper 52858, University Library of Munich, Germany.

    More about this item


    Thresholding; Lasso; adaptive Lasso; penalized maximum likelihood; finite-sample distribution; asymptotic distribution; variance estimation; minimax rate; high-dimensional model; oracle property;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:31882. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.