IDEAS home Printed from https://ideas.repec.org/p/ucr/wpaper/201422.html
   My bibliography  Save this paper

Testing for Neglected Nonlinearity Using Regularized Artificial Neural Networks

Author

Listed:
  • Tae-Hwy Lee

    (Department of Economics, University of California Riverside)

  • Zhou Xi

    (University of California, Riverside)

  • Ru Zhang

    (University of California, Riverside)

Abstract

The artificial neural network (ANN) test of Lee et al. (Journal of Econometrics 56, 269–290, 1993) uses the ability of the ANN activation functions in the hidden layer to detect neglected functionalmisspecification. As the estimation of the ANN model is often quite difficult, LWG suggested activate the ANN hidden units based on randomly drawn activation parameters. To be robust to the random activations, a large number of activations is desirable. This leads to a situation for which regularization of the dimensionality is needed by techniques such as principal component analysis (PCA), Lasso, Pretest, partial least squares (PLS), among others. However, some regularization methods can lead to selection bias in testing if the dimensionality reduction is conducted by supervising the relationship between the ANN hidden layer activations of inputs and the output variable. This paper demonstrates that while these supervised regularization methods such as Lasso, Pretest, PLS, may be useful for forecasting, they may not be used for testing because the supervised regularizationwould create the post-sample inference or post-selection inference (PoSI) problem. Our Monte Carlo simulation shows that the PoSI problem is especially severe with PLS and Pretest while it seems relatively mild or even negligible with Lasso. This paper also demonstrates that the use of unsupervised regularization does not lead to the PoSI problem. Lee et al. (Journal of Econometrics 56, 269–290, 1993) suggested a regularization by principal components, which is a unsupervised regularization.While the supervised regularizations may be useful in forecasting, regularization should not be supervised in inference.

Suggested Citation

  • Tae-Hwy Lee & Zhou Xi & Ru Zhang, 2013. "Testing for Neglected Nonlinearity Using Regularized Artificial Neural Networks," Working Papers 201422, University of California at Riverside, Department of Economics, revised Apr 2012.
  • Handle: RePEc:ucr:wpaper:201422
    as

    Download full text from publisher

    File URL: https://economics.ucr.edu/repec/ucr/wpaper/201422.pdf
    File Function: First version, 2013
    Download Restriction: no

    File URL: https://economics.ucr.edu/repec/ucr/wpaper/201422R.pdf
    File Function: Revised version, 2012
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Inoue, Atsushi & Kilian, Lutz, 2008. "How Useful Is Bagging in Forecasting Economic Time Series? A Case Study of U.S. Consumer Price Inflation," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 511-522, June.
    2. White,Halbert, 1996. "Estimation, Inference and Specification Analysis," Cambridge Books, Cambridge University Press, number 9780521574464, January.
    3. Leeb, Hannes & Pötscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 21-59, February.
    4. Fan, Yanqin & Li, Qi, 1996. "Consistent Model Specification Tests: Omitted Variables and Semiparametric Functional Forms," Econometrica, Econometric Society, vol. 64(4), pages 865-890, July.
    5. Hamilton, James D, 2001. "A Parametric Approach to Flexible Nonlinear Inference," Econometrica, Econometric Society, vol. 69(3), pages 537-573, May.
    6. Thanasis Stengos & Yiguo Sun, 2001. "A Consistent Model Specification Test For A Regression Function Based On Nonparametric Wavelet Estimation," Econometric Reviews, Taylor & Francis Journals, vol. 20(1), pages 41-60.
    7. Leeb, Hannes & Pötscher, Benedikt M., 2006. "Performance Limits For Estimators Of The Risk Or Distribution Of Shrinkage-Type Estimators, And Some General Lower Risk-Bound Results," Econometric Theory, Cambridge University Press, vol. 22(1), pages 69-97, February.
    8. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    9. Li, Q. & Wang, Suojin, 1998. "A simple consistent bootstrap test for a parametric regression function," Journal of Econometrics, Elsevier, vol. 87(1), pages 145-165, August.
    10. Corradi, Valentina & Swanson, Norman R., 2002. "A consistent test for nonlinear out of sample predictive accuracy," Journal of Econometrics, Elsevier, vol. 110(2), pages 353-381, October.
    11. Leeb, Hannes & Pötscher, Benedikt M., 2008. "Can One Estimate The Unconditional Distribution Of Post-Model-Selection Estimators?," Econometric Theory, Cambridge University Press, vol. 24(2), pages 338-376, April.
    12. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    13. Andrews, Donald W K & Ploberger, Werner, 1994. "Optimal Tests When a Nuisance Parameter Is Present Only under the Alternative," Econometrica, Econometric Society, vol. 62(6), pages 1383-1414, November.
    14. Kock Anders Bredahl, 2011. "Forecasting with Universal Approximators and a Learning Algorithm," Journal of Time Series Econometrics, De Gruyter, vol. 3(3), pages 1-32, October.
    15. Anders Bredahl Kock & Timo Teräsvirta, 2016. "Forecasting Macroeconomic Variables Using Neural Network Models and Three Automated Model Selection Techniques," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1753-1779, December.
    16. John Xu Zheng, 1996. "A consistent test of functional form via nonparametric estimation techniques," Journal of Econometrics, Elsevier, vol. 75(2), pages 263-289, December.
    17. Leeb, Hannes & Pötscher, Benedikt M., 2003. "The Finite-Sample Distribution Of Post-Model-Selection Estimators And Uniform Versus Nonuniform Approximations," Econometric Theory, Cambridge University Press, vol. 19(1), pages 100-142, February.
    18. Christian M. Dahl, 2002. "An investigation of tests for linearity and the accuracy of likelihood based inference using random fields," Econometrics Journal, Royal Economic Society, vol. 5(2), pages 263-284, June.
    19. White, Halbert, 2006. "Approximate Nonlinear Forecasting Methods," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 9, pages 459-512, Elsevier.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee Tae-Hwy, 2001. "Neural Network Test and Nonparametric Kernel Test for Neglected Nonlinearity in Regression Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 4(4), pages 1-15, January.
    2. Pötscher, Benedikt M. & Leeb, Hannes, 2009. "On the distribution of penalized maximum likelihood estimators: The LASSO, SCAD, and thresholding," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2065-2082, October.
    3. Russell Davidson & Victoria Zinde‐Walsh, 2017. "Advances in specification testing," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 50(5), pages 1595-1631, December.
    4. White, Halbert & Pettenuzzo, Davide, 2014. "Granger causality, exogeneity, cointegration, and economic policy analysis," Journal of Econometrics, Elsevier, vol. 178(P2), pages 316-330.
    5. Porter, Jack & Yu, Ping, 2015. "Regression discontinuity designs with unknown discontinuity points: Testing and estimation," Journal of Econometrics, Elsevier, vol. 189(1), pages 132-147.
    6. Liu, Chu-An, 2015. "Distribution theory of the least squares averaging estimator," Journal of Econometrics, Elsevier, vol. 186(1), pages 142-159.
    7. Gao, Jiti, 2007. "Nonlinear time series: semiparametric and nonparametric methods," MPRA Paper 39563, University Library of Munich, Germany, revised 01 Sep 2007.
    8. Pötscher, Benedikt M. & Schneider, Ulrike, 2007. "On the distribution of the adaptive LASSO estimator," MPRA Paper 6913, University Library of Munich, Germany.
    9. Sant’Anna, Pedro H.C. & Song, Xiaojun, 2019. "Specification tests for the propensity score," Journal of Econometrics, Elsevier, vol. 210(2), pages 379-404.
    10. Lin, Zhongjian & Li, Qi & Sun, Yiguo, 2014. "A consistent nonparametric test of parametric regression functional form in fixed effects panel data models," Journal of Econometrics, Elsevier, vol. 178(P1), pages 167-179.
    11. Pötscher, Benedikt M., 2006. "The Distribution of Model Averaging Estimators and an Impossibility Result Regarding Its Estimation," MPRA Paper 73, University Library of Munich, Germany, revised Jul 2006.
    12. Bruce E. Hansen, 2007. "Least Squares Model Averaging," Econometrica, Econometric Society, vol. 75(4), pages 1175-1189, July.
    13. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, number 8355.
    14. El Ghouch, Anouar & Genton, Marc G. & Bouezmarni , Taoufik, 2012. "Measuring the Discrepancy of a Parametric Model via Local Polynomial Smoothing," LIDAM Discussion Papers ISBA 2012001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Wan, Alan T.K. & Zhang, Xinyu & Zou, Guohua, 2010. "Least squares model averaging by Mallows criterion," Journal of Econometrics, Elsevier, vol. 156(2), pages 277-283, June.
    16. E. Zacharias & T. Stengos, 2006. "Intertemporal pricing and price discrimination: a semiparametric hedonic analysis of the personal computer market," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 371-386.
    17. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
    18. Terasvirta, Timo, 2006. "Forecasting economic variables with nonlinear models," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 8, pages 413-457, Elsevier.
    19. Wang, Xuexin, 2015. "A Note on Consistent Conditional Moment Tests," MPRA Paper 69005, University Library of Munich, Germany.
    20. E Fe-Rodriguez & C D Orme, 2005. "The Asymptotic Equivalence of Kernel-based Nonparametric Conditional Moment Test Statistics," Economics Discussion Paper Series 0504, Economics, The University of Manchester.

    More about this item

    Keywords

    Randomized ANN activations • Dimension reduction • Supervised regularization • Unsupervised regularization • PCA • Lasso • PLS • Pretest • PoSI problem;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucr:wpaper:201422. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/deucrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kelvin Mac (email available below). General contact details of provider: https://edirc.repec.org/data/deucrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.