IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v598y2021i7880d10.1038_s41586-021-03883-8.html
   My bibliography  Save this article

Estimating a social cost of carbon for global energy consumption

Author

Listed:
  • Ashwin Rode

    (University of Chicago)

  • Tamma Carleton

    (University of California, Santa Barbara
    National Bureau of Economic Research)

  • Michael Delgado

    (Rhodium Group)

  • Michael Greenstone

    (National Bureau of Economic Research
    University of Chicago)

  • Trevor Houser

    (Rhodium Group)

  • Solomon Hsiang

    (National Bureau of Economic Research
    University of California, Berkeley)

  • Andrew Hultgren

    (University of Chicago
    University of Chicago)

  • Amir Jina

    (National Bureau of Economic Research
    University of Chicago)

  • Robert E. Kopp

    (Rutgers University
    Rutgers University)

  • Kelly E. McCusker

    (Rhodium Group)

  • Ishan Nath

    (Princeton University)

  • James Rising

    (University of Delaware)

  • Jiacan Yuan

    (Fudan University
    Fudan University
    Fudan University
    Fudan University)

Abstract

Estimates of global economic damage caused by carbon dioxide (CO2) emissions can inform climate policy1–3. The social cost of carbon (SCC) quantifies these damages by characterizing how additional CO2 emissions today impact future economic outcomes through altering the climate4–6. Previous estimates have suggested that large, warming-driven increases in energy expenditures could dominate the SCC7,8, but they rely on models9–11 that are spatially coarse and not tightly linked to data2,3,6,7,12,13. Here we show that the release of one ton of CO2 today is projected to reduce total future energy expenditures, with most estimates valued between −US$3 and −US$1, depending on discount rates. Our results are based on an architecture that integrates global data, econometrics and climate science to estimate local damages worldwide. Notably, we project that emerging economies in the tropics will dramatically increase electricity consumption owing to warming, which requires critical infrastructure planning. However, heating reductions in colder countries offset this increase globally. We estimate that 2099 annual global electricity consumption increases by about 4.5 exajoules (7 per cent of current global consumption) per one-degree-Celsius increase in global mean surface temperature (GMST), whereas direct consumption of other fuels declines by about 11.3 exajoules (7 per cent of current global consumption) per one-degree-Celsius increase in GMST. Our finding of net savings contradicts previous research7,8, because global data indicate that many populations will remain too poor for most of the twenty-first century to substantially increase energy consumption in response to warming. Importantly, damage estimates would differ if poorer populations were given greater weight14.

Suggested Citation

  • Ashwin Rode & Tamma Carleton & Michael Delgado & Michael Greenstone & Trevor Houser & Solomon Hsiang & Andrew Hultgren & Amir Jina & Robert E. Kopp & Kelly E. McCusker & Ishan Nath & James Rising & Ji, 2021. "Estimating a social cost of carbon for global energy consumption," Nature, Nature, vol. 598(7880), pages 308-314, October.
  • Handle: RePEc:nat:nature:v:598:y:2021:i:7880:d:10.1038_s41586-021-03883-8
    DOI: 10.1038/s41586-021-03883-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03883-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03883-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xin & Li, Jingwen & Xiong, Yi & Ang, Yee Sin, 2022. "Efficient harvesting of low-grade waste heat from proton exchange membrane fuel cells via thermoradiative power devices," Energy, Elsevier, vol. 258(C).
    2. Zhang, Boling & Wang, Qian & Wang, Sixia & Tong, Ruipeng, 2023. "Coal power demand and paths to peak carbon emissions in China: A provincial scenario analysis oriented by CO2-related health co-benefits," Energy, Elsevier, vol. 282(C).
    3. Edward Manderson & Timothy Considine, 2021. "The Effect of Temperature on Energy Demand and the Role of Adaptation," Economics Discussion Paper Series 2112, Economics, The University of Manchester.
    4. Wu, Junnian & Li, Xue & Jin, Rong, 2022. "The response of the industrial system to the interrelationship approaching to carbon neutrality of carbon sources and sinks from carbon metabolism: Coal chemical case study," Energy, Elsevier, vol. 261(PB).
    5. Tan-Soo, Jie-Sheng & Li, Jun & Qin, Ping, 2023. "Individuals' and households' climate adaptation and mitigation behaviors: A systematic review," China Economic Review, Elsevier, vol. 77(C).
    6. Seung Choi, Han & Hur, Sunghoon & Kumar, Ajeet & Song, Hyunseok & Min Baik, Jeong & Song, Hyun-Cheol & Ryu, Jungho, 2023. "Continuous pyroelectric energy generation with cyclic magnetic phase transition for low-grade thermal energy harvesting," Applied Energy, Elsevier, vol. 344(C).
    7. Auffhammer, Maximilian, 2022. "Climate Adaptive Response Estimation: Short and long run impacts of climate change on residential electricity and natural gas consumption," Journal of Environmental Economics and Management, Elsevier, vol. 114(C).
    8. Hao, Xinyu & Sun, Wen & Zhang, Xiaoling, 2023. "How does a scarcer allowance remake the carbon market? An evolutionary game analysis from the perspective of stakeholders," Energy, Elsevier, vol. 280(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:598:y:2021:i:7880:d:10.1038_s41586-021-03883-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.