IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v280y2020ics0306261920314045.html
   My bibliography  Save this article

Low-carbon oriented optimal energy dispatch in coupled natural gas and electricity systems

Author

Listed:
  • Wang, Yunqi
  • Qiu, Jing
  • Tao, Yuechuan
  • Zhang, Xian
  • Wang, Guibin

Abstract

The integrated energy system (IES) can leverage the synergy of different types of energy systems, which contain considerable potential in the overall carbon emission mitigation. To achieve the low-carbon transition, financial incentives such as carbon trading are employed in the electricity and natural gas sectors to encourage flexibly emission mitigation to cover the extra carbon costs. However, the existing trading policy applies unilateral mechanism, carbon costs are usually levied on power generation and gas supply companies. Utility companies would simply pass-through the carbon costs to consumers by incorporating them into upward energy prices. Further, due to more than one form of energy consumption in integrated components, there are twofold charges of carbon costs for some consumers in IES. It would be difficult to mitigate carbon emission effectively and efficiently without an equitable trading mechanism. It should be noted that end-use consumers are the underlying drivers of emissions in the energy supply chain. Therefore, this paper proposes a two-stage low-carbon operation planning model based on a bilateral trading mechanism with active demand side management (DSM), aiming to mitigate carbon emissions. The carbon emission flow (CEF) model is applied to track the emissions and calculate the carbon intensities, energy storage systems like battery and power-to-gas (P2G) are considered. The proposed model is tested on a modified IEEE 24-bus electricity system and a modified 20-bus natural gas system. According to the simulation results, the proposed model is effective to reduce carbon intensity by increasing the proportion of energy with low carbon intensity in the energy mix and further achieve carbon emission mitigation. Meanwhile, the demand side can also obtain extra environmental financial benefits by DSM and planned zero-emission facilities under the bilateral trading mechanism.

Suggested Citation

  • Wang, Yunqi & Qiu, Jing & Tao, Yuechuan & Zhang, Xian & Wang, Guibin, 2020. "Low-carbon oriented optimal energy dispatch in coupled natural gas and electricity systems," Applied Energy, Elsevier, vol. 280(C).
  • Handle: RePEc:eee:appene:v:280:y:2020:i:c:s0306261920314045
    DOI: 10.1016/j.apenergy.2020.115948
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920314045
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115948?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
    2. Zhang, Xian & Chan, K.W. & Wang, Huaizhi & Hu, Jiefeng & Zhou, Bin & Zhang, Yan & Qiu, Jing, 2019. "Game-theoretic planning for integrated energy system with independent participants considering ancillary services of power-to-gas stations," Energy, Elsevier, vol. 176(C), pages 249-264.
    3. E G Gomes & M P E Lins, 2008. "Modelling undesirable outputs with zero sum gains data envelopment analysis models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(5), pages 616-623, May.
    4. Lins, Marcos P. Estellita & Gomes, Eliane G. & Soares de Mello, Joao Carlos C. B. & Soares de Mello, Adelino Jose R., 2003. "Olympic ranking based on a zero sum gains DEA model," European Journal of Operational Research, Elsevier, vol. 148(2), pages 312-322, July.
    5. Kabirian, Alireza & Hemmati, Mohammad Reza, 2007. "A strategic planning model for natural gas transmission networks," Energy Policy, Elsevier, vol. 35(11), pages 5656-5670, November.
    6. Li, Zhengmao & Xu, Yan, 2019. "Temporally-coordinated optimal operation of a multi-energy microgrid under diverse uncertainties," Applied Energy, Elsevier, vol. 240(C), pages 719-729.
    7. Smith, Amanda D. & Mago, Pedro J., 2014. "Effects of load-following operational methods on combined heat and power system efficiency," Applied Energy, Elsevier, vol. 115(C), pages 337-351.
    8. Qiu, Jing & Zhao, Junhua & Yang, Hongming & Wang, Dongxiao & Dong, Zhao Yang, 2018. "Planning of solar photovoltaics, battery energy storage system and gas micro turbine for coupled micro energy grids," Applied Energy, Elsevier, vol. 219(C), pages 361-369.
    9. Zeng, Qing & Zhang, Baohua & Fang, Jiakun & Chen, Zhe, 2017. "A bi-level programming for multistage co-expansion planning of the integrated gas and electricity system," Applied Energy, Elsevier, vol. 200(C), pages 192-203.
    10. Fang, Kai & Zhang, Qifeng & Long, Yin & Yoshida, Yoshikuni & Sun, Lu & Zhang, Haoran & Dou, Yi & Li, Shuai, 2019. "How can China achieve its Intended Nationally Determined Contributions by 2030? A multi-criteria allocation of China’s carbon emission allowance," Applied Energy, Elsevier, vol. 241(C), pages 380-389.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenjin Chen & Jun Zhang & Feng Li & Ruoyi Zhang & Sennan Qi & Guoqing Li & Chong Wang, 2023. "Low Carbon Economic Dispatch of Integrated Energy System Considering Power-to-Gas Heat Recovery and Carbon Capture," Energies, MDPI, vol. 16(8), pages 1-19, April.
    2. Hua, Weiqi & Jiang, Jing & Sun, Hongjian & Teng, Fei & Strbac, Goran, 2022. "Consumer-centric decarbonization framework using Stackelberg game and Blockchain," Applied Energy, Elsevier, vol. 309(C).
    3. Andrianesis, Panagiotis & Biskas, Pandelis & Liberopoulos, George, 2021. "Evaluating the cost of emissions in a pool-based electricity market," Applied Energy, Elsevier, vol. 298(C).
    4. Wei, Xiang & Chan, Ka Wing & Wu, Ting & Wang, Guibin & Zhang, Xian & Liu, Junwei, 2023. "Wasserstein distance-based expansion planning for integrated energy system considering hydrogen fuel cell vehicles," Energy, Elsevier, vol. 272(C).
    5. Shabazbegian, Vahid & Ameli, Hossein & Ameli, Mohammad Taghi & Strbac, Goran & Qadrdan, Meysam, 2021. "Co-optimization of resilient gas and electricity networks; a novel possibilistic chance-constrained programming approach," Applied Energy, Elsevier, vol. 284(C).
    6. Huang, Yujing & Wang, Yudong & Liu, Nian, 2022. "Low-carbon economic dispatch and energy sharing method of multiple Integrated Energy Systems from the perspective of System of Systems," Energy, Elsevier, vol. 244(PA).
    7. An, Su & Wang, Honglei & Leng, Xiaoxia, 2022. "Optimal operation of multi-micro energy grids under distribution network in Southwest China," Applied Energy, Elsevier, vol. 309(C).
    8. Ju, Liwei & Liu, Li & Han, Yingzhu & Yang, Shenbo & Li, Gen & Lu, Xiaolong & Liu, Yi & Qiao, Huiting, 2023. "Robust Multi-objective optimal dispatching model for a novel island micro energy grid incorporating biomass waste energy conversion system, desalination and power-to-hydrogen devices," Applied Energy, Elsevier, vol. 343(C).
    9. Xiaoming Zhou & Maosheng Sang & Minglei Bao & Yi Ding, 2022. "Tracing and Evaluating Life-Cycle Carbon Emissions of Urban Multi-Energy Systems," Energies, MDPI, vol. 15(8), pages 1-19, April.
    10. Chien-Heng Chou & Sa Ly Ngo & Phung Phi Tran, 2023. "Renewable Energy Integration for Sustainable Economic Growth: Insights and Challenges via Bibliometric Analysis," Sustainability, MDPI, vol. 15(20), pages 1-26, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, J. & Wen, W. & Wang, M. & Zhou, P., 2022. "Optimizing the provincial target allocation scheme of renewable portfolio standards in China," Energy, Elsevier, vol. 250(C).
    2. Masoud Khatibi & Abbas Rabiee & Amir Bagheri, 2023. "Integrated Electricity and Gas Systems Planning: New Opportunities, and a Detailed Assessment of Relevant Issues," Sustainability, MDPI, vol. 15(8), pages 1-32, April.
    3. Shi, Wei & Li, Wei & Qiao, Fuwei & Wang, Weijuan & An, Yi & Zhang, Guowei, 2023. "An inter-provincial carbon quota study in China based on the contribution of clean energy to carbon reduction," Energy Policy, Elsevier, vol. 182(C).
    4. Dalai Ma & Yaping Xiao & Na Zhao, 2022. "Optimization and Spatiotemporal Differentiation of Carbon Emission Rights Allocation in the Power Industry in the Yangtze River Economic Belt," Sustainability, MDPI, vol. 14(9), pages 1-15, April.
    5. Yang, Mian & Hou, Yaru & Ji, Qiang & Zhang, Dayong, 2020. "Assessment and optimization of provincial CO2 emission reduction scheme in China: An improved ZSG-DEA approach," Energy Economics, Elsevier, vol. 91(C).
    6. Xin Zheng & Shenya Mao & Siqi Lv & Sheng Wang, 2022. "An Optimization Study of Provincial Carbon Emission Allowance Allocation in China Based on an Improved Dynamic Zero-Sum-Gains Slacks-Based-Measure Model," Sustainability, MDPI, vol. 14(12), pages 1-22, June.
    7. Yu, Anyu & Lee, Andy & Chen, Yao, 2021. "Carbon allocation targeting with abatement capability: A firm-level study," International Journal of Production Economics, Elsevier, vol. 235(C).
    8. Yu, Shasha & Lei, Ming & Deng, Honghui, 2023. "Evaluation to fixed-sum-outputs DMUs by non-oriented equilibrium efficient frontier DEA approach with Nash bargaining-based selection," Omega, Elsevier, vol. 115(C).
    9. Chen, Zhenling & Yuan, Xiao-Chen & Zhang, Xiaoling & Cao, Yunfei, 2020. "How will the Chinese national carbon emissions trading scheme work? The assessment of regional potential gains," Energy Policy, Elsevier, vol. 137(C).
    10. Yang, Min & Li, Yong Jun & Liang, Liang, 2015. "A generalized equilibrium efficient frontier data envelopment analysis approach for evaluating DMUs with fixed-sum outputs," European Journal of Operational Research, Elsevier, vol. 246(1), pages 209-217.
    11. Li, Feng & Zhang, Danlu & Zhang, Jinyu & Kou, Gang, 2022. "Measuring the energy production and utilization efficiency of Chinese thermal power industry with the fixed-sum carbon emission constraint," International Journal of Production Economics, Elsevier, vol. 252(C).
    12. Qianwen Yu & Zehao Sun & Junyuan Shen & Xia Xu & Xiangnan Chen, 2023. "Interactive Allocation of Water Pollutant Initial Emission Rights in a Basin under Total Amount Control: A Leader-Follower Hierarchical Decision Model," IJERPH, MDPI, vol. 20(2), pages 1-25, January.
    13. Danko Vidović & Elis Sutlović & Matislav Majstrović, 2021. "A Unique Electrical Model for the Steady-State Analysis of a Multi-Energy System," Energies, MDPI, vol. 14(18), pages 1-23, September.
    14. Daniel Then & Patrick Hein & Tanja M. Kneiske & Martin Braun, 2020. "Analysis of Dependencies between Gas and Electricity Distribution Grid Planning and Building Energy Retrofit Decisions," Sustainability, MDPI, vol. 12(13), pages 1-42, July.
    15. Zhou, Huansheng & Zheng, J.H. & Li, Zhigang & Wu, Q.H. & Zhou, X.X., 2019. "Multi-stage contingency-constrained co-planning for electricity-gas systems interconnected with gas-fired units and power-to-gas plants using iterative Benders decomposition," Energy, Elsevier, vol. 180(C), pages 689-701.
    16. A Z Milioni & J V G de Avellar & T N Rabello & G M de Freitas, 2011. "Hyperbolic frontier model: a parametric DEA approach for the distribution of a total fixed output," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(6), pages 1029-1037, June.
    17. Han, Rong & Li, Jianglong & Guo, Zhi, 2022. "Optimal quota in China's energy capping policy in 2030 with renewable targets and sectoral heterogeneity," Energy, Elsevier, vol. 239(PA).
    18. Thanasis Bouzidis & Giannis Karagiannis, 2022. "Extending the Zero-Sum Gains Data Envelopment Analysis Model," Discussion Paper Series 2022_06, Department of Economics, University of Macedonia, revised Aug 2022.
    19. Lozano, Sebastián, 2023. "Bargaining approach for efficiency assessment and target setting with fixed-sum variables," Omega, Elsevier, vol. 114(C).
    20. Fang, Kai & Zhang, Qifeng & Long, Yin & Yoshida, Yoshikuni & Sun, Lu & Zhang, Haoran & Dou, Yi & Li, Shuai, 2019. "How can China achieve its Intended Nationally Determined Contributions by 2030? A multi-criteria allocation of China’s carbon emission allowance," Applied Energy, Elsevier, vol. 241(C), pages 380-389.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:280:y:2020:i:c:s0306261920314045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.