IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v137y2020ics0301421519306822.html
   My bibliography  Save this article

How will the Chinese national carbon emissions trading scheme work? The assessment of regional potential gains

Author

Listed:
  • Chen, Zhenling
  • Yuan, Xiao-Chen
  • Zhang, Xiaoling
  • Cao, Yunfei

Abstract

The implementation of a national emissions trading scheme (ETS) in China is likely to have an important effect on potential regional gains. This study proposes a unified analytical framework for anticipating such gains in 2020 and estimates the key factors involved using data envelopment analysis based models. The results indicate that: (1) when the value of the marginal abatement cost is higher than the carbon price, no regions will have an incentive to reduce emissions by technological improvements. The only source of direct potential gains is from the amounts of carbon quota. (2) As carbon price increases from CNY 10 to 4000 per ton, the indirect potential gains will increase because the strategies for carbon reduction are technological innovation or limit economic activities. However, Jiangsu and Shanghai will suffer potential losses even though the price is high because they have no more carbon reduction potential. (3) Most central provinces will have potential gains when the carbon price is lower in ETS, while regions rich in fossil energy sources will suffer potential losses. However, a middle-price interval of CNY 1000–2000/ton is more rational, because it helps motivate market transactions and benefits low-carbon technological innovations.

Suggested Citation

  • Chen, Zhenling & Yuan, Xiao-Chen & Zhang, Xiaoling & Cao, Yunfei, 2020. "How will the Chinese national carbon emissions trading scheme work? The assessment of regional potential gains," Energy Policy, Elsevier, vol. 137(C).
  • Handle: RePEc:eee:enepol:v:137:y:2020:i:c:s0301421519306822
    DOI: 10.1016/j.enpol.2019.111095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421519306822
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2019.111095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Ke & Wei, Yi-Ming & Huang, Zhimin, 2016. "Potential gains from carbon emissions trading in China: A DEA based estimation on abatement cost savings," Omega, Elsevier, vol. 63(C), pages 48-59.
    2. Färe, Rolf & Grosskopf, Shawna & Pasurka, Carl A., 2014. "Potential gains from trading bad outputs: The case of U.S. electric power plants," Resource and Energy Economics, Elsevier, vol. 36(1), pages 99-112.
    3. Wang, Ke & Zhang, Xian & Yu, Xueying & Wei, Yi-Ming & Wang, Bin, 2016. "Emissions trading and abatement cost savings: An estimation of China's thermal power industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1005-1017.
    4. Tang, Ling & Shi, Jiarui & Bao, Qin, 2016. "Designing an emissions trading scheme for China with a dynamic computable general equilibrium model," Energy Policy, Elsevier, vol. 97(C), pages 507-520.
    5. Hübler, Michael & Voigt, Sebastian & Löschel, Andreas, 2014. "Designing an emissions trading scheme for China—An up-to-date climate policy assessment," Energy Policy, Elsevier, vol. 75(C), pages 57-72.
    6. Jiang, Minxing & Zhu, Bangzhu & Chevallier, Julien & Xie, Rui, 2018. "Allocating provincial CO2 quotas for the Chinese national carbon program," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(3), July.
    7. Boyce, James K., 2018. "Carbon Pricing: Effectiveness and Equity," Ecological Economics, Elsevier, vol. 150(C), pages 52-61.
    8. He, Weijun & Yang, Yi & Wang, Zhaohua & Zhu, Joe, 2018. "Estimation and allocation of cost savings from collaborative CO2 abatement in China," Energy Economics, Elsevier, vol. 72(C), pages 62-74.
    9. Tvinnereim, Endre & Mehling, Michael, 2018. "Carbon pricing and deep decarbonisation," Energy Policy, Elsevier, vol. 121(C), pages 185-189.
    10. Raymond, Leigh, 2019. "Policy perspective:Building political support for carbon pricing—Lessons from cap-and-trade policies," Energy Policy, Elsevier, vol. 134(C).
    11. Chunbo Ma and Atakelty Hailu, 2016. "The Marginal Abatement Cost of Carbon Emissions in China," The Energy Journal, International Association for Energy Economics, vol. 0(China Spe).
    12. Zhou, P. & Zhang, L. & Zhou, D.Q. & Xia, W.J., 2013. "Modeling economic performance of interprovincial CO2 emission reduction quota trading in China," Applied Energy, Elsevier, vol. 112(C), pages 1518-1528.
    13. Liu, Yu & Tan, Xiu-Jie & Yu, Yang & Qi, Shao-Zhou, 2017. "Assessment of impacts of Hubei Pilot emission trading schemes in China – A CGE-analysis using TermCO2 model," Applied Energy, Elsevier, vol. 189(C), pages 762-769.
    14. Fukuyama, Hirofumi & Weber, William L., 2009. "A directional slacks-based measure of technical inefficiency," Socio-Economic Planning Sciences, Elsevier, vol. 43(4), pages 274-287, December.
    15. Zhou, P. & Zhou, X. & Fan, L.W., 2014. "On estimating shadow prices of undesirable outputs with efficiency models: A literature review," Applied Energy, Elsevier, vol. 130(C), pages 799-806.
    16. Hu, Jin-Li & Kao, Chih-Hung, 2007. "Efficient energy-saving targets for APEC economies," Energy Policy, Elsevier, vol. 35(1), pages 373-382, January.
    17. Zhu, Bangzhu & Su, Bin & Li, Yingzhu, 2018. "Input-output and structural decomposition analysis of India’s carbon emissions and intensity, 2007/08 – 2013/14," Applied Energy, Elsevier, vol. 230(C), pages 1545-1556.
    18. Lee, Myunghun & Zhang, Ning, 2012. "Technical efficiency, shadow price of carbon dioxide emissions, and substitutability for energy in the Chinese manufacturing industries," Energy Economics, Elsevier, vol. 34(5), pages 1492-1497.
    19. Wang, Ke & Zhang, Xian & Wei, Yi-Ming & Yu, Shiwei, 2013. "Regional allocation of CO2 emissions allowance over provinces in China by 2020," Energy Policy, Elsevier, vol. 54(C), pages 214-229.
    20. Song, Yazhi & Liu, Tiansen & Liang, Dapeng & Li, Yin & Song, Xiaoqiu, 2019. "A Fuzzy Stochastic Model for Carbon Price Prediction Under the Effect of Demand-related Policy in China's Carbon Market," Ecological Economics, Elsevier, vol. 157(C), pages 253-265.
    21. Cui, Lian-Biao & Fan, Ying & Zhu, Lei & Bi, Qing-Hua, 2014. "How will the emissions trading scheme save cost for achieving China’s 2020 carbon intensity reduction target?," Applied Energy, Elsevier, vol. 136(C), pages 1043-1052.
    22. Wei, Chu & Ni, Jinlan & Du, Limin, 2012. "Regional allocation of carbon dioxide abatement in China," China Economic Review, Elsevier, vol. 23(3), pages 552-565.
    23. Wang, Jian & Lv, Kangjuan & Bian, Yiwen & Cheng, Yu, 2017. "Energy efficiency and marginal carbon dioxide emission abatement cost in urban China," Energy Policy, Elsevier, vol. 105(C), pages 246-255.
    24. E G Gomes & M P E Lins, 2008. "Modelling undesirable outputs with zero sum gains data envelopment analysis models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(5), pages 616-623, May.
    25. Hailu, Atakelty & Veeman, Terrence S., 2000. "Environmentally Sensitive Productivity Analysis of the Canadian Pulp and Paper Industry, 1959-1994: An Input Distance Function Approach," Journal of Environmental Economics and Management, Elsevier, vol. 40(3), pages 251-274, November.
    26. Lins, Marcos P. Estellita & Gomes, Eliane G. & Soares de Mello, Joao Carlos C. B. & Soares de Mello, Adelino Jose R., 2003. "Olympic ranking based on a zero sum gains DEA model," European Journal of Operational Research, Elsevier, vol. 148(2), pages 312-322, July.
    27. Liu, Xianbing & Fan, Yongbin & Wang, Can, 2017. "An estimation of the effect of carbon pricing for CO2 mitigation in China’s cement industry," Applied Energy, Elsevier, vol. 185(P1), pages 671-686.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying, Zhou & Xin-gang, Zhao, 2021. "The impact of Renewable Portfolio Standards on carbon emission trading under the background of China’s electricity marketization reform," Energy, Elsevier, vol. 226(C).
    2. Yizhang He & Wei Song, 2022. "Analysis of the Impact of Carbon Trading Policies on Carbon Emission and Carbon Emission Efficiency," Sustainability, MDPI, vol. 14(16), pages 1-20, August.
    3. Yidan Chen & Jiang Lin & David Roland-Holst & Xu Liu & Can Wang, 2023. "Declining Renewable Costs, Emissions Trading, and Economic Growth: China’s Power System at the Crossroads," Energies, MDPI, vol. 16(2), pages 1-14, January.
    4. Chen, Zhe & Song, Pei & Wang, Baolu, 2021. "Carbon emissions trading scheme, energy efficiency and rebound effect – Evidence from China's provincial data," Energy Policy, Elsevier, vol. 157(C).
    5. Jiangyue Joy Ying & Benjamin K. Sovacool, 2021. "A fair trade? Expert perceptions of equity, innovation, and public awareness in China’s future Emissions Trading Scheme," Climatic Change, Springer, vol. 164(3), pages 1-23, February.
    6. Acheampong, Alex O. & Dzator, Janet & Dzator, Michael & Salim, Ruhul, 2022. "Unveiling the effect of transport infrastructure and technological innovation on economic growth, energy consumption and CO2 emissions," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    7. Wu, Qunli & Ma, Zhe & Meng, Fanxing, 2022. "Long-term impacts of carbon allowance allocation in China: An IC-DCGE model optimized by the hypothesis of imperfectly competitive market," Energy, Elsevier, vol. 241(C).
    8. Wang, Xu & Zhu, Lei & Liu, Pengfei, 2021. "Manipulation via endowments: Quantifying the influence of market power on the emission trading scheme," Energy Economics, Elsevier, vol. 103(C).
    9. Yang, Mian & Hou, Yaru & Fang, Chao & Duan, Hongbo, 2020. "Constructing energy-consuming right trading system for China's manufacturing industry in 2025," Energy Policy, Elsevier, vol. 144(C).
    10. Nong, Duy & Simshauser, Paul & Nguyen, Duong Binh, 2021. "Greenhouse gas emissions vs CO2 emissions: Comparative analysis of a global carbon tax," Applied Energy, Elsevier, vol. 298(C).
    11. Azam Ghezelbash & Vahid Khaligh & Seyed Hamed Fahimifard & J. Jay Liu, 2023. "A Comparative Perspective of the Effects of CO 2 and Non-CO 2 Greenhouse Gas Emissions on Global Solar, Wind, and Geothermal Energy Investment," Energies, MDPI, vol. 16(7), pages 1-20, March.
    12. Chen, Zan & Jin, Jun & Li, Meng, 2022. "Does media coverage influence firm green innovation? The moderating role of regional environment," Technology in Society, Elsevier, vol. 70(C).
    13. Li, Mingquan & Gao, Huiwen & Abdulla, Ahmed & Shan, Rui & Gao, Shuo, 2022. "Combined effects of carbon pricing and power market reform on CO2 emissions reduction in China's electricity sector," Energy, Elsevier, vol. 257(C).
    14. Hu, Dianxi & Jiao, Jianling & Tang, Yunshu & Xu, Yuwen & Zha, Jianrui, 2022. "How global value chain participation affects green technology innovation processes: A moderated mediation model," Technology in Society, Elsevier, vol. 68(C).
    15. Shuhong Wang & Xiaojing Yi, 2023. "Can the Financial Industry ‘Anchor’ Carbon Emission Reductions?— The Mediating and Moderating Effects of the Technology Market," Energy & Environment, , vol. 34(3), pages 533-559, May.
    16. Di Zhou & Xiaoyu Liang & Ye Zhou & Kai Tang, 2020. "Does Emission Trading Boost Carbon Productivity? Evidence from China’s Pilot Emission Trading Scheme," IJERPH, MDPI, vol. 17(15), pages 1-16, July.
    17. Wang, Hao-ran & Feng, Tian-tian & Zhong, Cheng, 2023. "Effectiveness of CO2 cost pass-through to electricity prices under “electricity-carbon” market coupling in China," Energy, Elsevier, vol. 266(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Jianxin & Ma, Chunbo & Tang, Kai, 2019. "The static and dynamic heterogeneity and determinants of marginal abatement cost of CO2 emissions in Chinese cities," Energy, Elsevier, vol. 178(C), pages 685-694.
    2. Zhang, Weijie & Zhang, Ning & Yu, Yanni, 2019. "Carbon mitigation effects and potential cost savings from carbon emissions trading in China's regional industry," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 1-11.
    3. Wang, Ke & Wei, Yi-Ming & Huang, Zhimin, 2016. "Potential gains from carbon emissions trading in China: A DEA based estimation on abatement cost savings," Omega, Elsevier, vol. 63(C), pages 48-59.
    4. Yanni Yu & Weijie Zhang & Ning Zhang, 2018. "The Potential Gains from Carbon Emissions Trading in China’s Industrial Sectors," Computational Economics, Springer;Society for Computational Economics, vol. 52(4), pages 1175-1194, December.
    5. Dai, Sheng & Zhou, Xun & Kuosmanen, Timo, 2020. "Forward-looking assessment of the GHG abatement cost: Application to China," Energy Economics, Elsevier, vol. 88(C).
    6. Zhou, X. & Fan, L.W. & Zhou, P., 2015. "Marginal CO2 abatement costs: Findings from alternative shadow price estimates for Shanghai industrial sectors," Energy Policy, Elsevier, vol. 77(C), pages 109-117.
    7. Jiang, Jingjing & Xie, Dejun & Ye, Bin & Shen, Bo & Chen, Zhanming, 2016. "Research on China’s cap-and-trade carbon emission trading scheme: Overview and outlook," Applied Energy, Elsevier, vol. 178(C), pages 902-917.
    8. Zhang, Yanfang & Gao, Qi & Wei, Jinpeng & Shi, Xunpeng & Zhou, Dequn, 2023. "Can China's energy-consumption permit trading scheme achieve the “Porter” effect? Evidence from an estimated DSGE model," Energy Policy, Elsevier, vol. 180(C).
    9. Zhou, P. & Wang, M., 2016. "Carbon dioxide emissions allocation: A review," Ecological Economics, Elsevier, vol. 125(C), pages 47-59.
    10. Wu, Yinyin & Yu, Jie & Song, Malin & Chen, Jiandong & Hou, Wenxuan, 2021. "Shadow prices of industrial air pollutant emissions in China," Economic Modelling, Elsevier, vol. 94(C), pages 726-736.
    11. Shixiong Cheng & Wei Liu & Kai Lu, 2018. "Economic Growth Effect and Optimal Carbon Emissions under China’s Carbon Emissions Reduction Policy: A Time Substitution DEA Approach," Sustainability, MDPI, vol. 10(5), pages 1-23, May.
    12. Yiwen Bian & Kangjuan Lv & Anyu Yu, 2017. "China’s regional energy and carbon dioxide emissions efficiency evaluation with the presence of recovery energy: an interval slacks-based measure approach," Annals of Operations Research, Springer, vol. 255(1), pages 301-321, August.
    13. Zhang, Yue-Jun & Liang, Ting & Jin, Yan-Lin & Shen, Bo, 2020. "The impact of carbon trading on economic output and carbon emissions reduction in China’s industrial sectors," Applied Energy, Elsevier, vol. 260(C).
    14. Yu, Anyu & Lee, Andy & Chen, Yao, 2021. "Carbon allocation targeting with abatement capability: A firm-level study," International Journal of Production Economics, Elsevier, vol. 235(C).
    15. Ma, Chunbo & Hailu, Atakelty & You, Chaoying, 2019. "A critical review of distance function based economic research on China’s marginal abatement cost of carbon dioxide emissions," Energy Economics, Elsevier, vol. 84(C).
    16. Xian, Yujiao & Wang, Ke & Wei, Yi-Ming & Huang, Zhimin, 2019. "Would China’s power industry benefit from nationwide carbon emission permit trading? An optimization model-based ex post analysis on abatement cost savings," Applied Energy, Elsevier, vol. 235(C), pages 978-986.
    17. Yu, Anyu & You, Jianxin & Rudkin, Simon & Zhang, Hao, 2019. "Industrial carbon abatement allocations and regional collaboration: Re-evaluating China through a modified data envelopment analysis," Applied Energy, Elsevier, vol. 233, pages 232-243.
    18. Zhang, Yanfang & Guo, Siyuan & Shi, Xunpeng & Qian, Xiangyan & Nie, Rui, 2021. "A market instrument to achieve carbon neutrality: Is China’s energy-consumption permit trading scheme effective?," Applied Energy, Elsevier, vol. 299(C).
    19. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis," Energy Economics, Elsevier, vol. 48(C), pages 217-229.
    20. Zhou, P. & Sun, Z.R. & Zhou, D.Q., 2014. "Optimal path for controlling CO2 emissions in China: A perspective of efficiency analysis," Energy Economics, Elsevier, vol. 45(C), pages 99-110.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:137:y:2020:i:c:s0301421519306822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.