IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipas096014812401423x.html
   My bibliography  Save this article

Parameter adaptive stochastic model predictive control for wind–solar–hydrogen coupled power system

Author

Listed:
  • Huang, Yu
  • Li, Sijun
  • Zhang, Peng
  • Wang, Dongfeng
  • Lan, Jianjiang
  • Lee, Kwang Y.
  • Zhang, Qiliang

Abstract

With the increasing global energy scarcity and environmental concerns, the wind–solar–hydrogen (WSH) coupled system has garnered widespread attention as an efficient and eco-friendly renewable energy solution. Addressing the impact of uncertainty on the source and load of the coupled system concerning its power balance, a parameter adaptive stochastic model predictive control (PAS-MPC) power regulation strategy based on the scenario analysis method is proposed herein. In order to characterize the probabilistic information about the uncertainty on both sides of the system, scenario generation and reduction techniques are used to obtain classical scenarios of wind and solar outputs as well as electrical loads as inputs to PAS-MPC. With the aim of optimizing the computational time constant of SMPC, the parameter adaptive method is proposed to change the prediction time domain and control time domain of the system. Simulation results demonstrate the effectiveness of PAS-MPC in addressing uncertainties on the source and load sides of the WSH coupled system. Optimization results reveal that PAS-MPC considerably improves the system power balance compared to SMPC. Compared to the conventional model predictive control (MPC), PAS-MPC effectively mitigates high-power state of the controllable equipment of the system, thereby enhancing its lifecycle.

Suggested Citation

  • Huang, Yu & Li, Sijun & Zhang, Peng & Wang, Dongfeng & Lan, Jianjiang & Lee, Kwang Y. & Zhang, Qiliang, 2024. "Parameter adaptive stochastic model predictive control for wind–solar–hydrogen coupled power system," Renewable Energy, Elsevier, vol. 237(PA).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pa:s096014812401423x
    DOI: 10.1016/j.renene.2024.121355
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812401423X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121355?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Petrollese, Mario & Valverde, Luis & Cocco, Daniele & Cau, Giorgio & Guerra, José, 2016. "Real-time integration of optimal generation scheduling with MPC for the energy management of a renewable hydrogen-based microgrid," Applied Energy, Elsevier, vol. 166(C), pages 96-106.
    2. Gonzalez-Reina, Antonio Enrique & Garcia-Torres, Felix & Girona-Garcia, Victor & Sanchez-Sanchez-de-Puerta, Alvaro & Jimenez-Romero, F.J. & Jimenez-Hornero, Jorge E., 2024. "Cooperative model predictive control for avoiding critical instants of energy resilience in networked microgrids," Applied Energy, Elsevier, vol. 369(C).
    3. Nirbheram, Joshi Sukhdev & Mahesh, Aeidapu & Bhimaraju, Ambati, 2023. "Techno-economic analysis of grid-connected hybrid renewable energy system adapting hybrid demand response program and novel energy management strategy," Renewable Energy, Elsevier, vol. 212(C), pages 1-16.
    4. Li, Ke & Yang, Fan & Wang, Lupan & Yan, Yi & Wang, Haiyang & Zhang, Chenghui, 2022. "A scenario-based two-stage stochastic optimization approach for multi-energy microgrids," Applied Energy, Elsevier, vol. 322(C).
    5. Topa, A.O. & Gil, J.D. & Álvarez, J.D. & Torres, J.L., 2024. "A hybrid-MPC based energy management system with time series constraints for a bioclimatic building," Energy, Elsevier, vol. 287(C).
    6. Shi, Tao & Xu, Chang & Dong, Wenhao & Zhou, Hangyu & Bokhari, Awais & Klemeš, Jiří Jaromír & Han, Ning, 2023. "Research on energy management of hydrogen electric coupling system based on deep reinforcement learning," Energy, Elsevier, vol. 282(C).
    7. Kröger, David & Peper, Jan & Rehtanz, Christian, 2023. "Electricity market modeling considering a high penetration of flexible heating systems and electric vehicles," Applied Energy, Elsevier, vol. 331(C).
    8. Samimi, Abouzar & Nikzad, Mehdi & Siano, Pierluigi, 2017. "Scenario-based stochastic framework for coupled active and reactive power market in smart distribution systems with demand response programs," Renewable Energy, Elsevier, vol. 109(C), pages 22-40.
    9. Tobajas, Javier & Garcia-Torres, Felix & Roncero-Sánchez, Pedro & Vázquez, Javier & Bellatreche, Ladjel & Nieto, Emilio, 2022. "Resilience-oriented schedule of microgrids with hybrid energy storage system using model predictive control," Applied Energy, Elsevier, vol. 306(PB).
    10. Abdelbaky, Mohamed Abdelkarim & Liu, Xiangjie & Jiang, Di, 2020. "Design and implementation of partial offline fuzzy model-predictive pitch controller for large-scale wind-turbines," Renewable Energy, Elsevier, vol. 145(C), pages 981-996.
    11. Zhang, Yan & Meng, Fanlin & Wang, Rui & Kazemtabrizi, Behzad & Shi, Jianmai, 2019. "Uncertainty-resistant stochastic MPC approach for optimal operation of CHP microgrid," Energy, Elsevier, vol. 179(C), pages 1265-1278.
    12. Xu, Xuefang & Hu, Shiting & Shao, Huaishuang & Shi, Peiming & Li, Ruixiong & Li, Deguang, 2023. "A spatio-temporal forecasting model using optimally weighted graph convolutional network and gated recurrent unit for wind speed of different sites distributed in an offshore wind farm," Energy, Elsevier, vol. 284(C).
    13. Karimi, Hamid & Jadid, Shahram, 2023. "Multi-layer energy management of smart integrated-energy microgrid systems considering generation and demand-side flexibility," Applied Energy, Elsevier, vol. 339(C).
    14. Zhang, Yichen & Chen, Chen & Hong, Tianqi & Cui, Bai & Xu, Zhe & Chen, Bo & Qiu, Feng, 2023. "Robust trajectory-constrained frequency control for microgrids considering model linearization error," Applied Energy, Elsevier, vol. 333(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    2. Liu, Jiejie & Li, Yao & Ma, Yanan & Qin, Ruomu & Meng, Xianyang & Wu, Jiangtao, 2023. "Two-layer multiple scenario optimization framework for integrated energy system based on optimal energy contribution ratio strategy," Energy, Elsevier, vol. 285(C).
    3. Liu, Fang & Mo, Qiu & Yang, Yongwen & Li, Pai & Wang, Shuai & Xu, Yanping, 2022. "A nonlinear model-based dynamic optimal scheduling of a grid-connected integrated energy system," Energy, Elsevier, vol. 243(C).
    4. Li, Bei & Roche, Robin, 2020. "Optimal scheduling of multiple multi-energy supply microgrids considering future prediction impacts based on model predictive control," Energy, Elsevier, vol. 197(C).
    5. Wang, Yubin & Dong, Wei & Yang, Qiang, 2022. "Multi-stage optimal energy management of multi-energy microgrid in deregulated electricity markets," Applied Energy, Elsevier, vol. 310(C).
    6. Gonzalez-Reina, Antonio Enrique & Garcia-Torres, Felix & Girona-Garcia, Victor & Sanchez-Sanchez-de-Puerta, Alvaro & Jimenez-Romero, F.J. & Jimenez-Hornero, Jorge E., 2024. "Cooperative model predictive control for avoiding critical instants of energy resilience in networked microgrids," Applied Energy, Elsevier, vol. 369(C).
    7. Lingmin, Chen & Jiekang, Wu & Fan, Wu & Huiling, Tang & Changjie, Li & Yan, Xiong, 2020. "Energy flow optimization method for multi-energy system oriented to combined cooling, heating and power," Energy, Elsevier, vol. 211(C).
    8. Àlex Alonso-Travesset & Helena Martín & Sergio Coronas & Jordi de la Hoz, 2022. "Optimization Models under Uncertainty in Distributed Generation Systems: A Review," Energies, MDPI, vol. 15(5), pages 1-40, March.
    9. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    10. Huang, Chunjun & Zong, Yi & You, Shi & Træholt, Chresten & Zheng, Yi & Wang, Jiawei & Zheng, Zixuan & Xiao, Xianyong, 2023. "Economic and resilient operation of hydrogen-based microgrids: An improved MPC-based optimal scheduling scheme considering security constraints of hydrogen facilities," Applied Energy, Elsevier, vol. 335(C).
    11. Chen, Lei & Jiang, Yuqi & Zheng, Shencong & Deng, Xinyi & Chen, Hongkun & Islam, Md. Rabiul, 2023. "A two-layer optimal configuration approach of energy storage systems for resilience enhancement of active distribution networks," Applied Energy, Elsevier, vol. 350(C).
    12. Felix Garcia-Torres & Ascension Zafra-Cabeza & Carlos Silva & Stephane Grieu & Tejaswinee Darure & Ana Estanqueiro, 2021. "Model Predictive Control for Microgrid Functionalities: Review and Future Challenges," Energies, MDPI, vol. 14(5), pages 1-26, February.
    13. Tan, Bifei & Chen, Simin & Liang, Zipeng & Zheng, Xiaodong & Zhu, Yanjin & Chen, Haoyong, 2024. "An iteration-free hierarchical method for the energy management of multiple-microgrid systems with renewable energy sources and electric vehicles," Applied Energy, Elsevier, vol. 356(C).
    14. Zhang, Tianhao & Dong, Zhe & Huang, Xiaojin, 2024. "Multi-objective optimization of thermal power and outlet steam temperature for a nuclear steam supply system with deep reinforcement learning," Energy, Elsevier, vol. 286(C).
    15. Víctor Sanz i López & Ramon Costa-Castelló & Carles Batlle, 2022. "Literature Review of Energy Management in Combined Heat and Power Systems Based on High-Temperature Proton Exchange Membrane Fuel Cells for Residential Comfort Applications," Energies, MDPI, vol. 15(17), pages 1-22, September.
    16. Bielecki, Sławomir & Skoczkowski, Tadeusz, 2018. "An enhanced concept of Q-power management," Energy, Elsevier, vol. 162(C), pages 335-353.
    17. Tsao, Yu-Chung & Thanh, Vo-Van & Lu, Jye-Chyi, 2019. "Multiobjective robust fuzzy stochastic approach for sustainable smart grid design," Energy, Elsevier, vol. 176(C), pages 929-939.
    18. Wang, Hao & Wang, Tongguang & Ke, Shitang & Hu, Liang & Xie, Jiaojie & Cai, Xin & Cao, Jiufa & Ren, Yuxin, 2023. "Assessing code-based design wind loads for offshore wind turbines in China against typhoons," Renewable Energy, Elsevier, vol. 212(C), pages 669-682.
    19. Wu, Xiong & Qi, Shixiong & Wang, Zhao & Duan, Chao & Wang, Xiuli & Li, Furong, 2019. "Optimal scheduling for microgrids with hydrogen fueling stations considering uncertainty using data-driven approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    20. Arabgolarcheh, Alireza & Rouhollahi, Amirhossein & Benini, Ernesto, 2023. "Analysis of middle-to-far wake behind floating offshore wind turbines in the presence of multiple platform motions," Renewable Energy, Elsevier, vol. 208(C), pages 546-560.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pa:s096014812401423x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.