IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v219y2023ip1s0960148123014143.html
   My bibliography  Save this article

Bi-level multi-objective robust optimization for performance improvements in integrated energy system with solar fuel production

Author

Listed:
  • Ren, Ting
  • Li, Ran
  • Li, Xin

Abstract

The authors design an integrated energy system with solar fuel preparation as the core, integrating cooling, heating, electricity and fuel cell vehicles, aiming to meet the multiple energy needs of users. Fluctuations associated with renewable energy and energy demand pose a challenge to operational planning of systems. Unfortunately, common models do not take into account the impact of such fluctuations on system operation. To mitigate this challenge, the authors develop a bi-level multi-objective robust optimization model to obtain the optimal resilient dispatch of the system. The above model is transformed into a minimax optimization problem to alleviate the difficulties that solving it directly, and two nested algorithms are employed to maximize the energy conversion efficiency, minimize CO2 emissions and energy cost of the system. The energy, environmental and economic effects of system are compared using a robust optimization model and a deterministic optimization model. The operation performances of system in the bi-level robust optimization model are not all better than the results obtained from the deterministic model, because the robust optimization model considers the volatility of solar, wind, and customer loads during system operation. This research provides a feasible method to ensure the stability of the system.

Suggested Citation

  • Ren, Ting & Li, Ran & Li, Xin, 2023. "Bi-level multi-objective robust optimization for performance improvements in integrated energy system with solar fuel production," Renewable Energy, Elsevier, vol. 219(P1).
  • Handle: RePEc:eee:renene:v:219:y:2023:i:p1:s0960148123014143
    DOI: 10.1016/j.renene.2023.119499
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123014143
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119499?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:219:y:2023:i:p1:s0960148123014143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.