IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v379y2025ics0306261924023389.html
   My bibliography  Save this article

Fault-tolerant hierarchical energy management system for an electrical power system on more-electric aircraft

Author

Listed:
  • Wang, Xin
  • Atkin, Jason
  • Bozhko, Serhiy

Abstract

The concept of More-Electric Aircraft (MEA) has the potential to improve the environmental, economic, and reliability performance in the energy and transportation sectors. To achieve this potential, it has become a tendency to develop complex architectures of Electrical Power Systems (EPSs) for MEA to supply increasing electrical power demands. Moreover, a reliable and intelligent Energy Management System (EMS) is critical to coordinate the various EPS subsystems to ensure safe and efficient flight, following the real-time EPS operating requirements and safety criteria, while reducing the operating costs for all flight stages. This paper presents a fault-tolerant hierarchical EMS, for an innovative multi-converter-based aircraft EPS, to configure the system, ensure power distribution, and manage energy storage in multiple faulty scenarios over different time scales. There are two levels in this EMS: The High Level (HL) is based on Model Predictive Control (MPC), formulated by Mixed-Integer-Linear-Programming (MILP), to optimise the long-term EPS performance while considering future predictions; The Low Level (LL) adopts deterministic rules to cope with load changes and fault occurrences over the short term, during the HL sample intervals, with a faster clock. In particular, the LL controller contains four modes: to either cooperate with the HL online MPC or to operate independently, in either EPS normal or faulty conditions. The proposed EMS is evaluated in two cases, firstly considering load deviations in a normal operating scenario, and then considering behaviour in fault scenarios. The results indicate that the proposed EMS successfully reduces the EPS operational costs while ensuring quick responses to dynamic changes with either EPS component faults or EMS internal faults.

Suggested Citation

  • Wang, Xin & Atkin, Jason & Bozhko, Serhiy, 2025. "Fault-tolerant hierarchical energy management system for an electrical power system on more-electric aircraft," Applied Energy, Elsevier, vol. 379(C).
  • Handle: RePEc:eee:appene:v:379:y:2025:i:c:s0306261924023389
    DOI: 10.1016/j.apenergy.2024.124955
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924023389
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124955?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ghaemi, Zahra & Tran, Thomas T.D. & Smith, Amanda D., 2022. "Comparing classical and metaheuristic methods to optimize multi-objective operation planning of district energy systems considering uncertainties," Applied Energy, Elsevier, vol. 321(C).
    2. Zhang, Jinning & Roumeliotis, Ioannis & Zolotas, Argyrios, 2022. "Model-based fully coupled propulsion-aerodynamics optimization for hybrid electric aircraft energy management strategy," Energy, Elsevier, vol. 245(C).
    3. Prodan, Ionela & Zio, Enrico & Stoican, Florin, 2015. "Fault tolerant predictive control design for reliable microgrid energy management under uncertainties," Energy, Elsevier, vol. 91(C), pages 20-34.
    4. Wang, Yujie & Sun, Zhendong & Chen, Zonghai, 2019. "Energy management strategy for battery/supercapacitor/fuel cell hybrid source vehicles based on finite state machine," Applied Energy, Elsevier, vol. 254(C).
    5. Zheng, Fengying & Chen, Yuang & Zhang, Jingyang & Cheng, Fengna & Zhang, Jingzhou, 2023. "A two-stage energy management for integrated thermal/energy optimization of aircraft airborne system based on Stackelberg game," Energy, Elsevier, vol. 269(C).
    6. Restrepo, Mauricio & Cañizares, Claudio A. & Simpson-Porco, John W. & Su, Peter & Taruc, John, 2021. "Optimization- and Rule-based Energy Management Systems at the Canadian Renewable Energy Laboratory microgrid facility," Applied Energy, Elsevier, vol. 290(C).
    7. Xin Wang & Jason Atkin & Najmeh Bazmohammadi & Serhiy Bozhko & Josep M. Guerrero, 2021. "Optimal Load and Energy Management of Aircraft Microgrids Using Multi-Objective Model Predictive Control," Sustainability, MDPI, vol. 13(24), pages 1-24, December.
    8. Zhang, He & Saudemont, Christophe & Robyns, Benoît & Meuret, Régis, 2010. "Comparison of different DC voltage supervision strategies in a local Power Distribution System of More Electric Aircraft," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(2), pages 263-276.
    9. Collins, Jeffrey M. & McLarty, Dustin, 2020. "All-electric commercial aviation with solid oxide fuel cell-gas turbine-battery hybrids," Applied Energy, Elsevier, vol. 265(C).
    10. Elkazaz, Mahmoud & Sumner, Mark & Naghiyev, Eldar & Pholboon, Seksak & Davies, Richard & Thomas, David, 2020. "A hierarchical two-stage energy management for a home microgrid using model predictive and real-time controllers," Applied Energy, Elsevier, vol. 269(C).
    11. Ollas, Patrik & Sigarchian, Sara Ghaem & Alfredsson, Hampus & Leijon, Jennifer & Döhler, Jessica Santos & Aalhuizen, Christoffer & Thiringer, Torbjörn & Thomas, Karin, 2023. "Evaluating the role of solar photovoltaic and battery storage in supporting electric aviation and vehicle infrastructure at Visby Airport," Applied Energy, Elsevier, vol. 352(C).
    12. Shi, Wenzhuo & Huangfu, Yigeng & Xu, Liangcai & Pang, Shengzhao, 2022. "Online energy management strategy considering fuel cell fault for multi-stack fuel cell hybrid vehicle based on multi-agent reinforcement learning," Applied Energy, Elsevier, vol. 328(C).
    13. Shan, Chuan & Sun, Kangwen & Ji, Xinzhe & Cheng, Dongji, 2023. "A reconfiguration method for photovoltaic array of stratospheric airship based on multilevel optimization algorithm," Applied Energy, Elsevier, vol. 352(C).
    14. Liu, Hanyou & Fan, Ailong & Li, Yongping & Bucknall, Richard & Chen, Li, 2024. "Hierarchical distributed MPC method for hybrid energy management: A case study of ship with variable operating conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    15. Haubensak, Lukas & Strahl, Stephan & Braun, Jochen & Faulwasser, Timm, 2024. "Towards real-time capable optimal control for fuel cell vehicles using hierarchical economic MPC," Applied Energy, Elsevier, vol. 366(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lyu, Chenghao & Zhang, Yuchen & Bai, Yilin & Yang, Kun & Song, Zhengxiang & Ma, Yuhang & Meng, Jinhao, 2024. "Inner-outer layer co-optimization of sizing and energy management for renewable energy microgrid with storage," Applied Energy, Elsevier, vol. 363(C).
    2. Fang, Debin & Wang, Pengyu, 2023. "Optimal real-time pricing and electricity package by retail electric providers based on social learning," Energy Economics, Elsevier, vol. 117(C).
    3. Wang, Yujie & Sun, Zhendong & Li, Xiyun & Yang, Xiaoyu & Chen, Zonghai, 2019. "A comparative study of power allocation strategies used in fuel cell and ultracapacitor hybrid systems," Energy, Elsevier, vol. 189(C).
    4. Arkadiusz Adamczyk, 2020. "Sizing and Control Algorithms of a Hybrid Energy Storage System Based on Fuel Cells," Energies, MDPI, vol. 13(19), pages 1-15, October.
    5. Chen, Zheng & Hu, Hengjie & Wu, Yitao & Zhang, Yuanjian & Li, Guang & Liu, Yonggang, 2020. "Stochastic model predictive control for energy management of power-split plug-in hybrid electric vehicles based on reinforcement learning," Energy, Elsevier, vol. 211(C).
    6. Gheouany, Saad & Ouadi, Hamid & El Bakali, Saida, 2024. "Optimal active and reactive energy management for a smart microgrid system under the Moroccan grid pricing code," Energy, Elsevier, vol. 306(C).
    7. Günther, Sebastian & Bensmann, Astrid & Hanke-Rauschenbach, Richard, 2025. "Representative energy management strategies for hybrid energy storage systems derived from a meta-review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
    8. Sun, Yantao & Guo, Yujia & Zhang, Qiang & Jia, Youwei, 2025. "Berth allocation and energy scheduling for all-electric ships in seaport microgrid: A Stackelberg game approach," Energy, Elsevier, vol. 322(C).
    9. Li, Ling-Ling & Ji, Bing-Xiang & Li, Zhong-Tao & Lim, Ming K. & Sethanan, Kanchana & Tseng, Ming-Lang, 2025. "Microgrid energy management system with degradation cost and carbon trading mechanism: A multi-objective artificial hummingbird algorithm," Applied Energy, Elsevier, vol. 378(PA).
    10. Wang, Mingkai & Xiaoyang, Guotai & He, Ruichen & Zhang, Shuguang & Ma, Jintao, 2023. "Bi-layer sizing and design optimization method of propulsion system for electric vertical takeoff and landing aircraft," Energy, Elsevier, vol. 283(C).
    11. Tian, Weiyong & Zhang, Xiaohui & Zhou, Peng & Guo, Ruixue, 2025. "Review of energy management technologies for unmanned aerial vehicles powered by hydrogen fuel cell," Energy, Elsevier, vol. 323(C).
    12. Zubi, Ghassan & Kuhn, Maximilian & Makridis, Sofoklis & Coutinho, Savio & Dorasamy, Stanley, 2025. "Aviation sector decarbonization within the hydrogen economy – A UAE case study," Energy Policy, Elsevier, vol. 198(C).
    13. Silva, Jéssica Alice A. & López, Juan Camilo & Guzman, Cindy Paola & Arias, Nataly Bañol & Rider, Marcos J. & da Silva, Luiz C.P., 2023. "An IoT-based energy management system for AC microgrids with grid and security constraints," Applied Energy, Elsevier, vol. 337(C).
    14. Diana Lemian & Florin Bode, 2022. "Battery-Supercapacitor Energy Storage Systems for Electrical Vehicles: A Review," Energies, MDPI, vol. 15(15), pages 1-13, August.
    15. Liu, Xinzhi & Qi, Nanjian & Dai, Keren & Yin, Yajiang & Zhao, Jiahao & Wang, Xiaofeng & You, Zheng, 2022. "Sponge Supercapacitor rule-based energy management strategy for wireless sensor nodes optimized by using dynamic programing algorithm," Energy, Elsevier, vol. 239(PE).
    16. Umme Mumtahina & Sanath Alahakoon & Peter Wolfs, 2024. "Hyperparameter Tuning of Load-Forecasting Models Using Metaheuristic Optimization Algorithms—A Systematic Review," Mathematics, MDPI, vol. 12(21), pages 1-51, October.
    17. Wang, Jun & Tian, Xinyi & Jiang, Mingjun & Lu, Guodong & Fang, Qiansheng & Ji, Jie & Luo, Chenglong, 2025. "Comparison of the photoelectric power by the flexible nonplanar PV modules in different layout and design," Applied Energy, Elsevier, vol. 388(C).
    18. Cheng, Kunlin & Li, Jiahui & Jiang, Fangyan & Xiao, Qi & Zou, Zhenhai & Qin, Jiang & Jing, Wuxing, 2024. "Novel nuclear power and fossil fuel hybrid propulsion systems for long-endurance unmanned aerial vehicles: Configuration comparison and performance optimization," Energy, Elsevier, vol. 313(C).
    19. Heuts, Y.J.J. & Wouters, J.J.F. & Hulsebos, O.F. & Donkers, M.C.F., 2025. "Modeling, implementation and experimental verification of eco-driving on a battery-electric heavy-duty vehicle," Applied Energy, Elsevier, vol. 390(C).
    20. Jia, Chunchun & He, Hongwen & Zhou, Jiaming & Li, Jianwei & Wei, Zhongbao & Li, Kunang, 2023. "A novel health-aware deep reinforcement learning energy management for fuel cell bus incorporating offline high-quality experience," Energy, Elsevier, vol. 282(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:379:y:2025:i:c:s0306261924023389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.