IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223024465.html
   My bibliography  Save this article

Bi-layer sizing and design optimization method of propulsion system for electric vertical takeoff and landing aircraft

Author

Listed:
  • Wang, Mingkai
  • Xiaoyang, Guotai
  • He, Ruichen
  • Zhang, Shuguang
  • Ma, Jintao

Abstract

Electric vertical takeoff and landing (eVTOL) aircraft is a promising solution for future urban air mobility, but it suffers from insufficient energy and power density as opposed to fossil fuel-based aircraft. This paper proposes a bi-layer design optimization method for electric propulsion systems. To tackle the issue of high-dimension design parameters and multiple performance constraints, the design process is divided into two parameter optimization problems. In the upper layer, only scalar parameters of components are considered to determine a feasible sizing result subject to energy-flow limits. The outcome of this layer further serves as the initial guess of the lower design layer. The constraints of power conservation and conversion among components are taken into account. The optimization is scheduled in a cascaded paradigm that maximizes the total energy efficiency with minimized total weight. The blade-element momentum method is employed to estimate propeller thrust and torque coefficients. The proposed method is applied to a tilt-wing eVTOL. The sizing results shows that the eVTOL mass is reduced by 11.66% as opposed to the benchmark method. The proposed method provides a generic framework for sizing and design optimization independent of configuration and mission profiles.

Suggested Citation

  • Wang, Mingkai & Xiaoyang, Guotai & He, Ruichen & Zhang, Shuguang & Ma, Jintao, 2023. "Bi-layer sizing and design optimization method of propulsion system for electric vertical takeoff and landing aircraft," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024465
    DOI: 10.1016/j.energy.2023.129052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223024465
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.