IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipes0360544221026694.html
   My bibliography  Save this article

Radically new solutions for reducing the energy use by future aircraft and their operations

Author

Listed:
  • Rohacs, J.
  • Kale, U.
  • Rohacs, D.

Abstract

Nowadays, new developments of future aircraft focus on the electric and electric – hybrid aircraft, while features, especially the specific energy and thermal instability of the available accumulator technology cause serious problems. This paper aims to define, discuss, and evaluate how the radically new, so-called out-of-the-box solutions may improve energy efficiency, and reduce the energy consumptions of future aircraft and their operations. This study introduces a novel methodology for (i) evaluation of the energy efficiency, (ii) estimation of the possible energy consumption reduction, (iii) estimation of the used energy reductions. The practical part shortly describes the radically new technologies and solutions that can be applied for reducing the energy consumption of (iv) aircraft development, and (v) aircraft operations, including the ground and terminal operations, as well as discuss some results of two radically new concepts, namely maglev assisted take-off and landing and hybrid-electric aircraft with unconventional structural solutions. Among the developed out-of-the-box solutions, the required energy can be reduced significantly by the “undercarriage-less configuration concept”, and “electric UAV supporter concept” up to 21% and 10% respectively. In addition to this, the fuel burn can be reduced by 15–20% by the “Cruiser-Feeder Concept”.

Suggested Citation

  • Rohacs, J. & Kale, U. & Rohacs, D., 2022. "Radically new solutions for reducing the energy use by future aircraft and their operations," Energy, Elsevier, vol. 239(PE).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pe:s0360544221026694
    DOI: 10.1016/j.energy.2021.122420
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221026694
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122420?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rohacs, Jozsef & Rohacs, Daniel, 2020. "Energy coefficients for comparison of aircraft supported by different propulsion systems," Energy, Elsevier, vol. 191(C).
    2. Sziroczak, David & Jankovics, Istvan & Gal, Istvan & Rohacs, Daniel, 2020. "Conceptual design of small aircraft with hybrid-electric propulsion systems," Energy, Elsevier, vol. 204(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rohács, Dániel, 2023. "Analysis and optimization of potential energy sources for residential building application," Energy, Elsevier, vol. 275(C).
    2. Wang, Weida & Chen, Yincong & Yang, Chao & Li, Ying & Xu, Bin & Xiang, Changle, 2022. "An enhanced hypotrochoid spiral optimization algorithm based intertwined optimal sizing and control strategy of a hybrid electric air-ground vehicle," Energy, Elsevier, vol. 257(C).
    3. Balli, Ozgur & Kale, Utku & Rohács, Dániel & Hikmet Karakoc, T., 2022. "Environmental damage cost and exergoenvironmental evaluations of piston prop aviation engines for the landing and take-off flight phases," Energy, Elsevier, vol. 261(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jinning & Roumeliotis, Ioannis & Zolotas, Argyrios, 2022. "Model-based fully coupled propulsion-aerodynamics optimization for hybrid electric aircraft energy management strategy," Energy, Elsevier, vol. 245(C).
    2. Wang, Weida & Chen, Yincong & Yang, Chao & Li, Ying & Xu, Bin & Xiang, Changle, 2022. "An enhanced hypotrochoid spiral optimization algorithm based intertwined optimal sizing and control strategy of a hybrid electric air-ground vehicle," Energy, Elsevier, vol. 257(C).
    3. Özbek, Emre & Yalin, Gorkem & Ekici, Selcuk & Karakoc, T. Hikmet, 2020. "Evaluation of design methodology, limitations, and iterations of a hydrogen fuelled hybrid fuel cell mini UAV," Energy, Elsevier, vol. 213(C).
    4. Zhang, Haonan & Duan, Buren & Wu, Lizhi & Hua, Zuohao & Bao, Zijing & Guo, Ning & Ye, Yinghua & Galfetti, Luciano & DeLuca, Luigi T. & Shen, Ruiqi, 2021. "Actualization of an efficient throttleable laser propulsion mode," Energy, Elsevier, vol. 221(C).
    5. Khaoula Derbel & Károly Beneda, 2020. "Sliding Mode Control for Micro Turbojet Engine Using Turbofan Power Ratio as Control Law," Energies, MDPI, vol. 13(18), pages 1-23, September.
    6. Aydın, Emre & Turan, Onder, 2023. "Performance models of passenger aircraft and propulsion systems based on particle swarm and Spotted Hyena Optimization methods," Energy, Elsevier, vol. 268(C).
    7. Kinene, Alan & Birolini, Sebastian & Cattaneo, Mattia & Granberg, Tobias Andersson, 2023. "Electric aircraft charging network design for regional routes: A novel mathematical formulation and kernel search heuristic," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1300-1315.
    8. Bravo, Guillem Moreno & Praliyev, Nurgeldy & Veress, Árpád, 2021. "Performance analysis of hybrid electric and distributed propulsion system applied on a light aircraft," Energy, Elsevier, vol. 214(C).
    9. Wang, Tao & Zhang, Yu & Yin, Zhao & Qiu, Liang & Hua, Yang & Zhang, Xian-wen & Qian, Ye-jian, 2023. "Decoupling control scheme optimization and energy analysis for a triaxial gas turbine based on the variable power offtakes/inputs," Energy, Elsevier, vol. 262(PB).
    10. Hashemi, Seyed Reza & Mahajan, Ajay Mohan & Farhad, Siamak, 2021. "Online estimation of battery model parameters and state of health in electric and hybrid aircraft application," Energy, Elsevier, vol. 229(C).
    11. Wei, Zhiyuan & Zhang, Shuguang & Jafari, Soheil & Nikolaidis, Theoklis, 2022. "Self-enhancing model-based control for active transient protection and thrust response improvement of gas turbine aero-engines," Energy, Elsevier, vol. 242(C).
    12. Zhang, Zhen & Zhang, Tiezhu & Hong, Jichao & Zhang, Hongxin & Yang, Jian & Jia, Qingxiao, 2023. "Double deep Q-network guided energy management strategy of a novel electric-hydraulic hybrid electric vehicle," Energy, Elsevier, vol. 269(C).
    13. Duan, Buren & Zhang, Haonan & Hua, Zuohao & Wu, Lizhi & Bao, Zijing & Guo, Ning & Ye, Yinghua & Shen, Ruiqi, 2022. "Burning characteristics and combustion wave model of AP/AN-based laser-controlled solid propellant," Energy, Elsevier, vol. 253(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pe:s0360544221026694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.