IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v257y2022ics0360544222016528.html
   My bibliography  Save this article

An enhanced hypotrochoid spiral optimization algorithm based intertwined optimal sizing and control strategy of a hybrid electric air-ground vehicle

Author

Listed:
  • Wang, Weida
  • Chen, Yincong
  • Yang, Chao
  • Li, Ying
  • Xu, Bin
  • Xiang, Changle

Abstract

Hybrid electric air-ground vehicles (HEAGVs) are deemed as promising transportations due to their great versatility, mobility, and environmental values. Capable of ground-driving, vertical-take-off-and-land, and near-ground flight, HEAGVs are competent to pass poor road conditions such as broken bridges or cliffs. As a crucial part of the HEAGV development, size of the power sources is hard to design owing to different characteristics of air-driving and ground-driving. Large power sources would result in increased fuel consumption and accelerating battery degradation, while small ones might lead to insufficient power supply. Thus, optimal sizing of the power sources is needed at the functional level of a HEAGV design. Moreover, at the performance level, the control strategy should be taken into account simultaneously, which significantly affects the sizing process. However, the intertwined optimal sizing and control strategy of HEAGV becomes difficult to address due to the expanded design space. Motivated by this, an efficient co-optimization strategy is presented for the studied HEAGV, intended to simultaneously find optimal sizing of the battery pack and turbine-generator pack and optimal logic threshold control parameters. The initial mass, fuel consumption, and battery degradation are chosen as optimization objectives to formulate an objective function. Then, a novel enhanced hypotrochoid spiral optimization algorithm (EHSOA) is proposed to address the intricated co-optimization problem. In this algorithm, an enhanced bi-considering mechanism is firstly proposed to avoid the optimization process being trapped in local optima. The co-optimization is implemented under an air-ground driving cycle. Results show that, compared to the initial design, the proposed strategy reduces initial mass, fuel consumption, and battery degradation by 5.08%, 26.10%, and 2.08%, respectively. Finally, the proposed EHSOA is demonstrated to be more qualified to solve the intricated co-optimization problem in comparison to other optimization algorithms. The proposed co-optimization strategy might provide theoretical insights for future HEAGV powertrain designs.

Suggested Citation

  • Wang, Weida & Chen, Yincong & Yang, Chao & Li, Ying & Xu, Bin & Xiang, Changle, 2022. "An enhanced hypotrochoid spiral optimization algorithm based intertwined optimal sizing and control strategy of a hybrid electric air-ground vehicle," Energy, Elsevier, vol. 257(C).
  • Handle: RePEc:eee:energy:v:257:y:2022:i:c:s0360544222016528
    DOI: 10.1016/j.energy.2022.124749
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222016528
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124749?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Quan & Li, Yanfei & Zhao, Dezong & Li, Ji & Williams, Huw & Xu, Hongming & Yan, Fuwu, 2022. "Transferable representation modelling for real-time energy management of the plug-in hybrid vehicle based on k-fold fuzzy learning and Gaussian process regression," Applied Energy, Elsevier, vol. 305(C).
    2. Yang, Zhile & Li, Kang & Guo, Yuanjun & Feng, Shengzhong & Niu, Qun & Xue, Yusheng & Foley, Aoife, 2019. "A binary symmetric based hybrid meta-heuristic method for solving mixed integer unit commitment problem integrating with significant plug-in electric vehicles," Energy, Elsevier, vol. 170(C), pages 889-905.
    3. Yang, Chao & Liu, Kaijia & Jiao, Xiaohong & Wang, Weida & Chen, Ruihu & You, Sixiong, 2022. "An adaptive firework algorithm optimization-based intelligent energy management strategy for plug-in hybrid electric vehicles," Energy, Elsevier, vol. 239(PB).
    4. Turan, Onder, 2012. "Exergetic effects of some design parameters on the small turbojet engine for unmanned air vehicle applications," Energy, Elsevier, vol. 46(1), pages 51-61.
    5. Maria Nadia Postorino & Giuseppe M. L. Sarné, 2020. "Reinventing Mobility Paradigms: Flying Car Scenarios and Challenges for Urban Mobility," Sustainability, MDPI, vol. 12(9), pages 1-16, April.
    6. Sziroczak, David & Jankovics, Istvan & Gal, Istvan & Rohacs, Daniel, 2020. "Conceptual design of small aircraft with hybrid-electric propulsion systems," Energy, Elsevier, vol. 204(C).
    7. Zhu, Jianyun & Chen, Li & Wang, Xuefeng & Yu, Long, 2020. "Bi-level optimal sizing and energy management of hybrid electric propulsion systems," Applied Energy, Elsevier, vol. 260(C).
    8. Rohacs, J. & Kale, U. & Rohacs, D., 2022. "Radically new solutions for reducing the energy use by future aircraft and their operations," Energy, Elsevier, vol. 239(PE).
    9. Zhengchao Wei & Yue Ma & Changle Xiang & Dabo Liu & Weixiang Zhou, 2021. "Power Prediction-Based Model Predictive Control for Energy Management in Land and Air Vehicle with Turboshaft Engine," Complexity, Hindawi, vol. 2021, pages 1-24, August.
    10. Kapetanović, Marko & Núñez, Alfredo & van Oort, Niels & Goverde, Rob M.P., 2021. "Reducing fuel consumption and related emissions through optimal sizing of energy storage systems for diesel-electric trains," Applied Energy, Elsevier, vol. 294(C).
    11. Yang, Chao & Wang, Muyao & Wang, Weida & Pu, Zesong & Ma, Mingyue, 2021. "An efficient vehicle-following predictive energy management strategy for PHEV based on improved sequential quadratic programming algorithm," Energy, Elsevier, vol. 219(C).
    12. Akshat Kasliwal & Noah J. Furbush & James H. Gawron & James R. McBride & Timothy J. Wallington & Robert D. De Kleine & Hyung Chul Kim & Gregory A. Keoleian, 2019. "Role of flying cars in sustainable mobility," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pampa Sinha & Kaushik Paul & Sanchari Deb & Sulabh Sachan, 2023. "Comprehensive Review Based on the Impact of Integrating Electric Vehicle and Renewable Energy Sources to the Grid," Energies, MDPI, vol. 16(6), pages 1-39, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raoul Rothfeld & Mengying Fu & Miloš Balać & Constantinos Antoniou, 2021. "Potential Urban Air Mobility Travel Time Savings: An Exploratory Analysis of Munich, Paris, and San Francisco," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    2. Lee, Changju & Bae, Bumjoon & Lee, Yu Lim & Pak, Tae-Young, 2023. "Societal acceptance of urban air mobility based on the technology adoption framework," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    3. Abd-Elhaleem, Sameh & Shoeib, Walaa & Sobaih, Abdel Azim, 2023. "A new power management strategy for plug-in hybrid electric vehicles based on an intelligent controller integrated with CIGPSO algorithm," Energy, Elsevier, vol. 265(C).
    4. Saiteja, Pemmareddy & Ashok, B., 2022. "Critical review on structural architecture, energy control strategies and development process towards optimal energy management in hybrid vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    5. Yongbing Xiang & Xiaomin Yang, 2021. "An ECMS for Multi-Objective Energy Management Strategy of Parallel Diesel Electric Hybrid Ship Based on Ant Colony Optimization Algorithm," Energies, MDPI, vol. 14(4), pages 1-21, February.
    6. Pons-Prats, Jordi & Živojinović, Tanja & Kuljanin, Jovana, 2022. "On the understanding of the current status of urban air mobility development and its future prospects: Commuting in a flying vehicle as a new paradigm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    7. Cohen, Adam & Shaheen, Susan, 2021. "Urban Air Mobility: Opportunities and Obstacles," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt0r23p1gm, Institute of Transportation Studies, UC Berkeley.
    8. Antonio Gabaldón & Ana García-Garre & María Carmen Ruiz-Abellón & Antonio Guillamón & Roque Molina & Juan Medina, 2023. "Management of Railway Power System Peaks with Demand-Side Resources: An Application to Periodic Timetables," Sustainability, MDPI, vol. 15(3), pages 1-27, February.
    9. Ziya Sogut, M., 2021. "New approach for assessment of environmental effects based on entropy optimization of jet engine," Energy, Elsevier, vol. 234(C).
    10. Brunelli, Matteo & Ditta, Chiara Caterina & Postorino, Maria Nadia, 2023. "SP surveys to estimate Airport Shuttle demand in an Urban Air Mobility context," Transport Policy, Elsevier, vol. 141(C), pages 129-139.
    11. Ali, Busyairah Syd & Saji, Sam & Su, Moon Ting, 2022. "An assessment of frameworks for heterogeneous aircraft operations in low-altitude airspace," International Journal of Critical Infrastructure Protection, Elsevier, vol. 37(C).
    12. Emrani, Anisa & Berrada, Asmae & Bakhouya, Mohamed, 2022. "Optimal sizing and deployment of gravity energy storage system in hybrid PV-Wind power plant," Renewable Energy, Elsevier, vol. 183(C), pages 12-27.
    13. Balli, Ozgur & Kale, Utku & Rohács, Dániel & Hikmet Karakoc, T., 2022. "Environmental damage cost and exergoenvironmental evaluations of piston prop aviation engines for the landing and take-off flight phases," Energy, Elsevier, vol. 261(PB).
    14. Sun, Xiaojun & Yao, Chong & Song, Enzhe & Yang, Qidong & Yang, Xuchang, 2022. "Optimal control of transient processes in marine hybrid propulsion systems: Modeling, optimization and performance enhancement," Applied Energy, Elsevier, vol. 321(C).
    15. Coban, Kahraman & Şöhret, Yasin & Colpan, C. Ozgur & Karakoç, T. Hikmet, 2017. "Exergetic and exergoeconomic assessment of a small-scale turbojet fuelled with biodiesel," Energy, Elsevier, vol. 140(P2), pages 1358-1367.
    16. Aygun, Hakan & Turan, Onder, 2021. "Exergo-economic analysis of off-design a target drone engine for reconnaissance mission flight," Energy, Elsevier, vol. 224(C).
    17. Aygun, Hakan & Cilgin, Mehmet Emin & Ekmekci, Ismail & Turan, Onder, 2020. "Energy and performance optimization of an adaptive cycle engine for next generation combat aircraft," Energy, Elsevier, vol. 209(C).
    18. Gao, Kai & Luo, Pan & Xie, Jin & Chen, Bin & Wu, Yue & Du, Ronghua, 2023. "Energy management of plug-in hybrid electric vehicles based on speed prediction fused driving intention and LIDAR," Energy, Elsevier, vol. 284(C).
    19. Atilgan, Ramazan & Onder Turan,, 2020. "Economy and exergy of aircraft turboprop engine at dynamic loads," Energy, Elsevier, vol. 213(C).
    20. Songlin Yang & Jingan Feng & Bao Song, 2021. "Research on Decoupled Optimal Control of Straight-Line Driving Stability of Electric Vehicles Driven by Four-Wheel Hub Motors," Energies, MDPI, vol. 14(18), pages 1-25, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:257:y:2022:i:c:s0360544222016528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.