IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v209y2020ics0360544220313682.html
   My bibliography  Save this article

Energy and performance optimization of an adaptive cycle engine for next generation combat aircraft

Author

Listed:
  • Aygun, Hakan
  • Cilgin, Mehmet Emin
  • Ekmekci, Ismail
  • Turan, Onder

Abstract

For next generation aircraft, Adaptive Cycle Engine (ACE) is a candidate to fulfill the multi-mission requirements of flight. This new concept is promising to complete deficiencies of conventional low by-pass mixed turbofan engines because the ACE model incorporates different thermodynamic cycles (turbojet and turbofan) on the same air vehicle system. Firstly, performance and design results of the ACE model are compared with those of fixed cycle low by-pass turbofan engine by using specific fuel consumption (SFC), specific thrust (ST), power and efficiency parameters. Moreover, verification of the newly developed ACE model is performed. Secondly, considering some design parameters, ST and SFC values of the ACE model are analyzed for double by-pass mode (DBM) and single by-pass mode (SBM). Considering performance analysis of the ACE, SFC value is determined as 17.85 g/kN.s at DBM and 42.18 g/kN.s at SBM. According to results of energy analysis, overall efficiency of the ACE is calculated as 23% for DBM and 9% for SBM whereas fixed cycle engine has 18% for military mode and 7% for afterburner mode. Finally, minimization of (SFC) is obtained with genetic algorithm approach. Based on the design variables such as by-pass ratio and turbine inlet temperature, minimum SFC value for the ACE model is calculated as 17.41 g/kN.s at DBM and 40.45 g/kN.s at SBM.

Suggested Citation

  • Aygun, Hakan & Cilgin, Mehmet Emin & Ekmekci, Ismail & Turan, Onder, 2020. "Energy and performance optimization of an adaptive cycle engine for next generation combat aircraft," Energy, Elsevier, vol. 209(C).
  • Handle: RePEc:eee:energy:v:209:y:2020:i:c:s0360544220313682
    DOI: 10.1016/j.energy.2020.118261
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220313682
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118261?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rosen, Marc A., 2002. "Assessing energy technologies and environmental impacts with the principles of thermodynamics," Applied Energy, Elsevier, vol. 72(1), pages 427-441, May.
    2. Baklacioglu, Tolga & Turan, Onder & Aydin, Hakan, 2015. "Dynamic modeling of exergy efficiency of turboprop engine components using hybrid genetic algorithm-artificial neural networks," Energy, Elsevier, vol. 86(C), pages 709-721.
    3. Turan, Onder, 2012. "Exergetic effects of some design parameters on the small turbojet engine for unmanned air vehicle applications," Energy, Elsevier, vol. 46(1), pages 51-61.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aygun, Hakan & Erkara, Seref & Turan, Onder, 2022. "Comprehensive exergo- sustainability analysis for a next generation aero engine," Energy, Elsevier, vol. 239(PD).
    2. Aygun, Hakan, 2022. "Thermodynamic, environmental and sustainability calculations of a conceptual turboshaft engine under several power settings," Energy, Elsevier, vol. 245(C).
    3. Balli, Ozgur & Karakoc, T. Hikmet, 2022. "Exergetic, exergoeconomic, exergoenvironmental damage cost and impact analyses of an aircraft turbofan engine(ATFE)," Energy, Elsevier, vol. 256(C).
    4. Balli, Ozgur & Caliskan, Hakan, 2021. "Turbofan engine performances from aviation, thermodynamic and environmental perspectives," Energy, Elsevier, vol. 232(C).
    5. Wang, Busheng & Xuan, Yimin, 2023. "An integrated model for energy management of aero engines based on thermodynamic principle of variable mass systems," Energy, Elsevier, vol. 276(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aygun, Hakan & Kirmizi, Mehmet & Turan, Onder, 2022. "Propeller effects on energy, exergy and sustainability parameters of a small turboprop engine," Energy, Elsevier, vol. 249(C).
    2. Akdeniz, Halil Yalcin & Balli, Ozgur, 2022. "Impact of different fuel usages on thermodynamic performances of a high bypass turbofan engine used in commercial aircraft," Energy, Elsevier, vol. 238(PA).
    3. Turan, Önder & Aydın, Hakan, 2016. "Numerical calculation of energy and exergy flows of a turboshaft engine for power generation and helicopter applications," Energy, Elsevier, vol. 115(P1), pages 914-923.
    4. Bahri, Bahram & Shahbakhti, Mahdi & Aziz, Azhar Abdul, 2017. "Real-time modeling of ringing in HCCI engines using artificial neural networks," Energy, Elsevier, vol. 125(C), pages 509-518.
    5. Wang, Weida & Chen, Yincong & Yang, Chao & Li, Ying & Xu, Bin & Xiang, Changle, 2022. "An enhanced hypotrochoid spiral optimization algorithm based intertwined optimal sizing and control strategy of a hybrid electric air-ground vehicle," Energy, Elsevier, vol. 257(C).
    6. Ziya Sogut, M., 2021. "New approach for assessment of environmental effects based on entropy optimization of jet engine," Energy, Elsevier, vol. 234(C).
    7. Coban, Kahraman & Şöhret, Yasin & Colpan, C. Ozgur & Karakoç, T. Hikmet, 2017. "Exergetic and exergoeconomic assessment of a small-scale turbojet fuelled with biodiesel," Energy, Elsevier, vol. 140(P2), pages 1358-1367.
    8. Aygun, Hakan & Turan, Onder, 2021. "Exergo-economic analysis of off-design a target drone engine for reconnaissance mission flight," Energy, Elsevier, vol. 224(C).
    9. Atilgan, Ramazan & Onder Turan,, 2020. "Economy and exergy of aircraft turboprop engine at dynamic loads," Energy, Elsevier, vol. 213(C).
    10. Ridao, Ángel Ramos & García, Ernesto Hontoria & Escobar, Begoña Moreno & Toro, Montserrat Zamorano, 2007. "Solar energy in Andalusia (Spain): present state and prospects for the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(1), pages 148-161, January.
    11. Yurdusevimli Metin, Ece & Aygün, Hakan, 2019. "Energy and power aspects of an experimental target drone engine at non-linear controller loads," Energy, Elsevier, vol. 185(C), pages 981-993.
    12. Redha, Adel Mohammed & Dincer, Ibrahim & Gadalla, Mohamed, 2011. "Thermodynamic performance assessment of wind energy systems: An application," Energy, Elsevier, vol. 36(7), pages 4002-4010.
    13. Baklacioglu, Tolga & Turan, Onder & Aydin, Hakan, 2015. "Dynamic modeling of exergy efficiency of turboprop engine components using hybrid genetic algorithm-artificial neural networks," Energy, Elsevier, vol. 86(C), pages 709-721.
    14. Aygun, Hakan & Turan, Onder, 2020. "Exergetic sustainability off-design analysis of variable-cycle aero-engine in various bypass modes," Energy, Elsevier, vol. 195(C).
    15. Torío, H. & Schmidt, D., 2010. "Framework for analysis of solar energy systems in the built environment from an exergy perspective," Renewable Energy, Elsevier, vol. 35(12), pages 2689-2697.
    16. Tzanakakis, V.A. & Angelakis, A.N., 2011. "Chemical exergy as a unified and objective indicator in the assessment and optimization of land treatment systems," Ecological Modelling, Elsevier, vol. 222(17), pages 3082-3091.
    17. Aygun, Hakan & Turan, Onder, 2022. "Application of genetic algorithm in exergy and sustainability: A case of aero-gas turbine engine at cruise phase," Energy, Elsevier, vol. 238(PA).
    18. Turan, Onder & Aydin, Hakan, 2014. "Exergetic and exergo-economic analyses of an aero-derivative gas turbine engine," Energy, Elsevier, vol. 74(C), pages 638-650.
    19. Koruyucu, Elif, 2019. "Energy and exergy analysis at different hybridization factors for hybrid electric propulsion light utility helicopter engine," Energy, Elsevier, vol. 189(C).
    20. Şöhret, Yasin & Dinç, Ali & Karakoç, T. Hikmet, 2015. "Exergy analysis of a turbofan engine for an unmanned aerial vehicle during a surveillance mission," Energy, Elsevier, vol. 93(P1), pages 716-729.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:209:y:2020:i:c:s0360544220313682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.