IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v245y2022ics0360544222001542.html
   My bibliography  Save this article

Thermodynamic, environmental and sustainability calculations of a conceptual turboshaft engine under several power settings

Author

Listed:
  • Aygun, Hakan

Abstract

Application field of gas turbine engines has highly enlarged to different industries due to their significant properties. Constituting of one of several aero-engine types, turboshaft engines have drawn attention in recent years owing to rising usage areas. Therefore, it is very important to evaluate thermodynamic performance of turboshaft engines. In this study, a conceptual turboshaft engine with free turbine (TSE-FT) was examined using performance, energetic, exergetic and environmental parameters at ten different power settings. In this context, effects of different operating points on thermodynamics behaviour of the engine can be assessed in terms of environmental impact and sustainability. According to performance assessments, power specific fuel consumption of TSE-FT was estimated between 0.3075 kg/kW.h and 0.588 kg/kW.h throughout operating points whereas its power changes between 379.33 kW and 1772.51 kW for the specified ranges. As for thermodynamic calculations, the lowest and highest exergy efficiency were found between 71.34% and 79.05% for the combustor and between 89.38% and 93.64% for power turbine (PT), respectively. Furthermore, exergy efficiency of the whole TSE-FT was computed between 13.4% and 25.62% whereas its environmental effect factor changes from 7.43 to 3.87 due to rising power setting. Moreover, specific irreversibility production (SIP) of the TSE-FT varies from 3.805 to 1.574 as the engine power increases. These findings show that exergetic evaluations for different running points could guide the related engineers to find out optimum power settings giving the highest sustainability level.

Suggested Citation

  • Aygun, Hakan, 2022. "Thermodynamic, environmental and sustainability calculations of a conceptual turboshaft engine under several power settings," Energy, Elsevier, vol. 245(C).
  • Handle: RePEc:eee:energy:v:245:y:2022:i:c:s0360544222001542
    DOI: 10.1016/j.energy.2022.123251
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222001542
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123251?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aygun, Hakan & Turan, Onder, 2020. "Exergetic sustainability off-design analysis of variable-cycle aero-engine in various bypass modes," Energy, Elsevier, vol. 195(C).
    2. Aygun, Hakan & Cilgin, Mehmet Emin & Ekmekci, Ismail & Turan, Onder, 2020. "Energy and performance optimization of an adaptive cycle engine for next generation combat aircraft," Energy, Elsevier, vol. 209(C).
    3. Aygun, Hakan & Cilgin, Mehmet Emin & Turan, Onder, 2021. "Exergo-sustainability indicators of a target drone engine at dynamic loads," Energy, Elsevier, vol. 221(C).
    4. Yucer, Cem Tahsin, 2016. "Thermodynamic analysis of the part load performance for a small scale gas turbine jet engine by using exergy analysis method," Energy, Elsevier, vol. 111(C), pages 251-259.
    5. Speerforck, Arne & Ling, Jiazhen & Aute, Vikrant & Radermacher, Reinhard & Schmitz, Gerhard, 2017. "Modeling and simulation of a desiccant assisted solar and geothermal air conditioning system," Energy, Elsevier, vol. 141(C), pages 2321-2336.
    6. Coban, Kahraman & Colpan, C. Ozgur & Karakoc, T. Hikmet, 2017. "Application of thermodynamic laws on a military helicopter engine," Energy, Elsevier, vol. 140(P2), pages 1427-1436.
    7. Coban, Kahraman & Şöhret, Yasin & Colpan, C. Ozgur & Karakoç, T. Hikmet, 2017. "Exergetic and exergoeconomic assessment of a small-scale turbojet fuelled with biodiesel," Energy, Elsevier, vol. 140(P2), pages 1358-1367.
    8. Akdeniz, Halil Yalcin & Balli, Ozgur, 2022. "Impact of different fuel usages on thermodynamic performances of a high bypass turbofan engine used in commercial aircraft," Energy, Elsevier, vol. 238(PA).
    9. Turan, Önder & Aydın, Hakan, 2016. "Numerical calculation of energy and exergy flows of a turboshaft engine for power generation and helicopter applications," Energy, Elsevier, vol. 115(P1), pages 914-923.
    10. Balli, Ozgur & Caliskan, Hakan, 2021. "Turbofan engine performances from aviation, thermodynamic and environmental perspectives," Energy, Elsevier, vol. 232(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cai, Changpeng & Wang, Yong & Fang, Juan & Chen, Haoying & Zheng, Qiangang & Zhang, Haibo, 2023. "Multiple aspects to flight mission performances improvement of commercial turbofan engine via variable geometry adjustment," Energy, Elsevier, vol. 263(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aygun, Hakan & Erkara, Seref & Turan, Onder, 2022. "Comprehensive exergo- sustainability analysis for a next generation aero engine," Energy, Elsevier, vol. 239(PD).
    2. Aygun, Hakan & Cilgin, Mehmet Emin & Turan, Onder, 2021. "Exergo-sustainability indicators of a target drone engine at dynamic loads," Energy, Elsevier, vol. 221(C).
    3. Balli, Ozgur, 2022. "Thermodynamic, thermoenvironmental and thermoeconomic analyses of piston-prop engines (PPEs) for landing and take-off (LTO) flight phases," Energy, Elsevier, vol. 250(C).
    4. Akdeniz, Halil Yalcin & Balli, Ozgur, 2022. "Impact of different fuel usages on thermodynamic performances of a high bypass turbofan engine used in commercial aircraft," Energy, Elsevier, vol. 238(PA).
    5. Cai, Changpeng & Wang, Yong & Fang, Juan & Chen, Haoying & Zheng, Qiangang & Zhang, Haibo, 2023. "Multiple aspects to flight mission performances improvement of commercial turbofan engine via variable geometry adjustment," Energy, Elsevier, vol. 263(PA).
    6. Aygun, Hakan & Turan, Onder, 2021. "Exergo-economic analysis of off-design a target drone engine for reconnaissance mission flight," Energy, Elsevier, vol. 224(C).
    7. Atilgan, Ramazan & Onder Turan,, 2020. "Economy and exergy of aircraft turboprop engine at dynamic loads," Energy, Elsevier, vol. 213(C).
    8. Balli, Ozgur, 2023. "Exergetic, sustainability and environmental assessments of a turboshaft engine used on helicopter," Energy, Elsevier, vol. 276(C).
    9. Cihangir, Serhan Ahmet & Aygun, Hakan & Turan, Onder, 2022. "Energy and performance analysis of a turbofan engine with the aid of dynamic component efficiencies," Energy, Elsevier, vol. 260(C).
    10. Abdalla, Muftah S.M. & Balli, Ozgur & Adali, Osama H. & Korba, Peter & Kale, Utku, 2023. "Thermodynamic, sustainability, environmental and damage cost analyses of jet fuel starter gas turbine engine," Energy, Elsevier, vol. 267(C).
    11. Aygun, Hakan & Kirmizi, Mehmet & Kilic, Ulas & Turan, Onder, 2023. "Multi-objective optimization of a small turbojet engine energetic performance," Energy, Elsevier, vol. 271(C).
    12. Balli, Ozgur & Caliskan, Hakan, 2021. "Turbofan engine performances from aviation, thermodynamic and environmental perspectives," Energy, Elsevier, vol. 232(C).
    13. Karabacak, Mustafa & Kirmizi, Mehmet & Aygun, Hakan & Turan, Onder, 2023. "Application of exergetic analysis to inverted Brayton cycle engine at different flight conditions," Energy, Elsevier, vol. 283(C).
    14. Wang, Busheng & Xuan, Yimin, 2023. "An integrated model for energy management of aero engines based on thermodynamic principle of variable mass systems," Energy, Elsevier, vol. 276(C).
    15. Aygun, Hakan & Kirmizi, Mehmet & Turan, Onder, 2022. "Propeller effects on energy, exergy and sustainability parameters of a small turboprop engine," Energy, Elsevier, vol. 249(C).
    16. Burak Yuksel & Ozgur Balli & Huseyin Gunerhan & Arif Hepbasli, 2020. "Comparative Performance Metric Assessment of A Military Turbojet Engine Utilizing Hydrogen And Kerosene Fuels Through Advanced Exergy Analysis Method," Energies, MDPI, vol. 13(5), pages 1-22, March.
    17. Korba, Peter & Balli, Ozgur & Caliskan, Hakan & Al-Rabeei, Samer & Kale, Utku, 2023. "Energy, exergy, economic, environmental, and sustainability assessments of the CFM56-3 series turbofan engine used in the aviation sector," Energy, Elsevier, vol. 269(C).
    18. Jia, Xingyun & Zhou, Dengji, 2024. "Multi-variable anti-disturbance controller with state-dependent switching law for adaptive cycle engine," Energy, Elsevier, vol. 288(C).
    19. Kroyan, Yuri & Wojcieszyk, Michał & Kaario, Ossi & Larmi, Martti, 2022. "Modeling the impact of sustainable aviation fuel properties on end-use performance and emissions in aircraft jet engines," Energy, Elsevier, vol. 255(C).
    20. Aygun, Hakan & Turan, Onder, 2023. "Analysis of cruise conditions on energy, exergy and NOx emission parameters of a turbofan engine for middle-range aircraft," Energy, Elsevier, vol. 267(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:245:y:2022:i:c:s0360544222001542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.