IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223024489.html
   My bibliography  Save this article

Application of exergetic analysis to inverted Brayton cycle engine at different flight conditions

Author

Listed:
  • Karabacak, Mustafa
  • Kirmizi, Mehmet
  • Aygun, Hakan
  • Turan, Onder

Abstract

The aviation sector has continued to be modernized by overcoming technological challenges involving strict constraints for mission requirements. In this context, the great attention to newly proposed methods which the requirements satisfied has been drawn in the related aviation field. As a novelty, performance and exergy analyses of inverted Brayton cycle engine (IBCE) are investigated at supersonic speed (2.5 M) by comparing it with a conventional afterburning turbojet engine (CATE) in this study. Moreover, exergy analysis is performed solely for the IBCE at 5 M where only the IBCE could generate thrust. According to performance findings, specific fuel consumption (SFC) of the CATE changes from 57.97 g/kNs and 71.72 g/kNs whereas it raises from 51.76 g/kNs and 56.57 g/kNs for the IBCE due to variation of turbine inlet temperature (TIT) and afterburner exit temperature (AET) at 2.5 M. Also, thermal efficiency of the CATE varies approximately between 32.97% and 46.73% while that of IBCE changes between 50.72% and 58.43% for IBCE at 2.5 M. At hypersonic speed, SFC of the IBCE is measured to vary between 71.34 g/kN and 85.49 g/kN at 5 of Mach. Lastly, the exergy efficiency of IBCE changes between 23.73% and 27.70% at same conditions. Where the higher TIT leads to lowering it whereas the higher AET provides increment of exergy efficiency. This study shows that thanks to cycle change, gas turbine engines could provide more advantages for new generation aircraft compared with conventional ones.

Suggested Citation

  • Karabacak, Mustafa & Kirmizi, Mehmet & Aygun, Hakan & Turan, Onder, 2023. "Application of exergetic analysis to inverted Brayton cycle engine at different flight conditions," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024489
    DOI: 10.1016/j.energy.2023.129054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223024489
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.