IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223032395.html
   My bibliography  Save this article

Multi-variable anti-disturbance controller with state-dependent switching law for adaptive cycle engine

Author

Listed:
  • Jia, Xingyun
  • Zhou, Dengji

Abstract

Compared with the conventional turbofan engine, the adaptive cycle engine (ACE) has more extensive flight envelope and the more types and number of adjustable components. While the performance of each mission profile is improved adaptively, the controller design of profile switching process will face strong flight condition disturbance and internal uncertainty. The traditional control system's single loop controller and discrete switching method of control parameters are to some extent difficult to meet the adaptive and robustness requirements of ACE. Thus, this paper proposed a multi-variable decoupling anti-disturbance controller for ACE based on the results of flight envelope partitioning with similar distances, embedded a state-dependent switching law. By analyzing the impact of inlet disturbances, internal actuator actuation, and random degradation of component performance on different switching laws, the adjust time and overshoot of the controller with state-dependent switching law proposed in this paper are reduced by an average of about 11.91 % and about 9.98 %, and the average thrust linearity and robustness has increased by about 0.096 % and 20.02 %. Finally, the reliability and feasibility of the control system were verified based on a hydraulic driven semi-physical experimental platform, providing reference for more complex and dynamic engine operation control in the future.

Suggested Citation

  • Jia, Xingyun & Zhou, Dengji, 2024. "Multi-variable anti-disturbance controller with state-dependent switching law for adaptive cycle engine," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223032395
    DOI: 10.1016/j.energy.2023.129845
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223032395
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129845?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Busheng & Xuan, Yimin, 2023. "An integrated model for energy management of aero engines based on thermodynamic principle of variable mass systems," Energy, Elsevier, vol. 276(C).
    2. Aygun, Hakan & Cilgin, Mehmet Emin & Ekmekci, Ismail & Turan, Onder, 2020. "Energy and performance optimization of an adaptive cycle engine for next generation combat aircraft," Energy, Elsevier, vol. 209(C).
    3. Wu, Zhenlong & Li, Donghai & Xue, Yali & Chen, YangQuan, 2019. "Gain scheduling design based on active disturbance rejection control for thermal power plant under full operating conditions," Energy, Elsevier, vol. 185(C), pages 744-762.
    4. Wu, Zhenlong & Yuan, Jie & Liu, Yanhong & Li, Donghai & Chen, YangQuan, 2021. "An active disturbance rejection control design with actuator rate limit compensation for the ALSTOM gasifier benchmark problem," Energy, Elsevier, vol. 227(C).
    5. Aygun, Hakan & Erkara, Seref & Turan, Onder, 2022. "Comprehensive exergo- sustainability analysis for a next generation aero engine," Energy, Elsevier, vol. 239(PD).
    6. Duan, Linchao & Zhang, Xugang & Jiang, Zhigang & Gong, Qingshan & Wang, Yan & Ao, Xiuyi, 2023. "State of charge estimation of lithium-ion batteries based on second-order adaptive extended Kalman filter with correspondence analysis," Energy, Elsevier, vol. 280(C).
    7. Liu, Zhao & Chen, Huicui & Peng, Lian & Ye, Xichen & Xu, Sichen & Zhang, Tong, 2022. "Feedforward-decoupled closed-loop fuzzy proportion-integral-derivative control of air supply system of proton exchange membrane fuel cell," Energy, Elsevier, vol. 240(C).
    8. Lv, Chengkun & Huang, Qian & Chang, Juntao & Wang, Ziao & Zheng, Jialin & Yu, Daren, 2023. "Mode transition path optimization for turbine-based combined-cycle ramjet stage under uncertainty propagation of integrated airframe-propulsion system," Energy, Elsevier, vol. 268(C).
    9. Wei, Zhiyuan & Zhang, Shuguang & Jafari, Soheil & Nikolaidis, Theoklis, 2022. "Self-enhancing model-based control for active transient protection and thrust response improvement of gas turbine aero-engines," Energy, Elsevier, vol. 242(C).
    10. Kim, Sangjo, 2021. "A new performance adaptation method for aero gas turbine engines based on large amounts of measured data," Energy, Elsevier, vol. 221(C).
    11. Aygun, Hakan & Turan, Onder, 2020. "Exergetic sustainability off-design analysis of variable-cycle aero-engine in various bypass modes," Energy, Elsevier, vol. 195(C).
    12. Pan, Chaofeng & Huang, Aibao & Wang, Jian & Chen, Liao & Liang, Jun & Zhou, Weiqi & Wang, Limei & Yang, Jufeng, 2022. "Energy-optimal adaptive cruise control strategy for electric vehicles based on model predictive control," Energy, Elsevier, vol. 241(C).
    13. Ma, Penglei & Liu, Guijie & Wang, Honghui & Wang, Yong & Xie, Yudong, 2021. "Co-simulations of a semi-passive oscillating foil turbine using a hydraulic system," Energy, Elsevier, vol. 217(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karabacak, Mustafa & Kirmizi, Mehmet & Aygun, Hakan & Turan, Onder, 2023. "Application of exergetic analysis to inverted Brayton cycle engine at different flight conditions," Energy, Elsevier, vol. 283(C).
    2. Wu, Zhenlong & Liu, Yanhong & Li, Donghai & Chen, YangQuan, 2023. "Multivariable active disturbance rejection control for compression liquid chiller system," Energy, Elsevier, vol. 262(PA).
    3. Wang, Busheng & Xuan, Yimin, 2023. "An integrated model for energy management of aero engines based on thermodynamic principle of variable mass systems," Energy, Elsevier, vol. 276(C).
    4. Aygun, Hakan, 2022. "Thermodynamic, environmental and sustainability calculations of a conceptual turboshaft engine under several power settings," Energy, Elsevier, vol. 245(C).
    5. Balli, Ozgur & Caliskan, Hakan, 2021. "Turbofan engine performances from aviation, thermodynamic and environmental perspectives," Energy, Elsevier, vol. 232(C).
    6. Laihe Zhuang & Guoqiang Xu & Bensi Dong & Qihang Liu & Mengchen Li & Jie Wen, 2022. "Exergetic Effects of Cooled Cooling Air Technology on the Turbofan Engine during a Typical Mission," Energies, MDPI, vol. 15(14), pages 1-25, July.
    7. Balli, Ozgur & Karakoc, T. Hikmet, 2022. "Exergetic, exergoeconomic, exergoenvironmental damage cost and impact analyses of an aircraft turbofan engine(ATFE)," Energy, Elsevier, vol. 256(C).
    8. Dong, Zhe & Li, Bowen & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2022. "Power-pressure coordinated control of modular high temperature gas-cooled reactors," Energy, Elsevier, vol. 252(C).
    9. Chen, Yu-Zhi & Tsoutsanis, Elias & Wang, Chen & Gou, Lin-Feng, 2023. "A time-series turbofan engine successive fault diagnosis under both steady-state and dynamic conditions," Energy, Elsevier, vol. 263(PD).
    10. Hou, Guolian & Huang, Ting & Huang, Congzhi, 2023. "Flexibility improvement of 1000 MW ultra-supercritical unit under full operating conditions by error-based ADRC and fast pigeon-inspired optimizer," Energy, Elsevier, vol. 270(C).
    11. Cai, Changpeng & Wang, Yong & Fang, Juan & Chen, Haoying & Zheng, Qiangang & Zhang, Haibo, 2023. "Multiple aspects to flight mission performances improvement of commercial turbofan engine via variable geometry adjustment," Energy, Elsevier, vol. 263(PA).
    12. Wu, Zhenlong & Yuan, Jie & Liu, Yanhong & Li, Donghai & Chen, YangQuan, 2021. "An active disturbance rejection control design with actuator rate limit compensation for the ALSTOM gasifier benchmark problem," Energy, Elsevier, vol. 227(C).
    13. Hou, Guolian & Ke, Yin & Huang, Congzhi, 2021. "A flexible constant power generation scheme for photovoltaic system by error-based active disturbance rejection control and perturb & observe," Energy, Elsevier, vol. 237(C).
    14. Atilgan, Ramazan & Onder Turan,, 2020. "Economy and exergy of aircraft turboprop engine at dynamic loads," Energy, Elsevier, vol. 213(C).
    15. Wu, Jinglai & Zhang, Yunqing & Ruan, Jiageng & Liang, Zhaowen & Liu, Kai, 2023. "Rule and optimization combined real-time energy management strategy for minimizing cost of fuel cell hybrid electric vehicles," Energy, Elsevier, vol. 285(C).
    16. Pei, Pucheng & Meng, Yining & Chen, Dongfang & Ren, Peng & Wang, Mingkai & Wang, Xizhong, 2023. "Lifetime prediction method of proton exchange membrane fuel cells based on current degradation law," Energy, Elsevier, vol. 265(C).
    17. Xiaobo Cui & Pan Xu & Guohui Song & Haiming Gu & Hui Gu & Liang Wang & Hongxia Zhu, 2022. "PID Control of a Superheated Steam Temperature System Based on Integral Gain Scheduling," Energies, MDPI, vol. 15(23), pages 1-16, November.
    18. Sharifi, Alireza & Salarieh, Hassan, 2023. "An adaptive synergetic controller applied to heavy-duty gas turbine unit," Applied Energy, Elsevier, vol. 333(C).
    19. Aygun, Hakan & Kirmizi, Mehmet & Turan, Onder, 2022. "Propeller effects on energy, exergy and sustainability parameters of a small turboprop engine," Energy, Elsevier, vol. 249(C).
    20. Chen, Dongfang & Pei, Pucheng & Meng, Yining & Ren, Peng & Li, Yuehua & Wang, Mingkai & Wang, Xizhong, 2022. "Novel extraction method of working condition spectrum for the lifetime prediction and energy management strategy evaluation of automotive fuel cells," Energy, Elsevier, vol. 255(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223032395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.