IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v321y2025ics036054422501000x.html
   My bibliography  Save this article

An advanced performance-based method for soft and abrupt fault diagnosis of industrial gas turbines

Author

Listed:
  • Chen, Yu-Zhi
  • Zhang, Wei-Gang
  • Tsoutsanis, Elias
  • Zhao, Junjie
  • Tam, Ivan C.K.
  • Gou, Lin-Feng

Abstract

Integrating gas turbines with intermittent renewable energy must operate for prolonged periods under transient conditions. Existing research on fault diagnosis in such systems has concentrated on the primary rotating components in steady-state conditions. There is a gap in investigating the interplay between shaft bearing failure and performance metrics, as well as fault identification under transient conditions. This study aims to identify faults not only in the main rotating components but also in the shaft bearings under transient conditions. Firstly, the performance model and fault propagation model of gas turbines are established, and the influence of bearing fault on the whole engine performance is analysed. Then, the fault diagnosis method is determined and the dynamic effects are compensated in fault identification at each time interval. Finally, the steady-state and transient fault diagnosis are carried out considering the constant and sudden faults for the main rotating components and bearings. The average run time and maximum error during the engine life cycle are 0.1064 s and 0.0086 %. For the proposed dynamic effects compensation method, the average computation time and peak error at every moment are 0.1152 s and 0.0143 %, clearly superior to the benchmark method. These results provide evidence that the proposed method can correctly diagnose the fault of the main rotating components and shaft bearings under transient conditions. Therefore, the findings mark an advancement in real-time fault diagnostic techniques, ultimately enhancing engine availability while upholding secure and affordable energy production.

Suggested Citation

  • Chen, Yu-Zhi & Zhang, Wei-Gang & Tsoutsanis, Elias & Zhao, Junjie & Tam, Ivan C.K. & Gou, Lin-Feng, 2025. "An advanced performance-based method for soft and abrupt fault diagnosis of industrial gas turbines," Energy, Elsevier, vol. 321(C).
  • Handle: RePEc:eee:energy:v:321:y:2025:i:c:s036054422501000x
    DOI: 10.1016/j.energy.2025.135358
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422501000X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135358?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Yu-Zhi & Zhao, Xu-Dong & Xiang, Heng-Chao & Tsoutsanis, Elias, 2021. "A sequential model-based approach for gas turbine performance diagnostics," Energy, Elsevier, vol. 220(C).
    2. Zhao, Junjie & Li, Yi-Guang & Sampath, Suresh, 2023. "A hierarchical structure built on physical and data-based information for intelligent aero-engine gas path diagnostics," Applied Energy, Elsevier, vol. 332(C).
    3. Wang, Tao & Zhang, Yu & Yin, Zhao & Zhang, Hua-liang & Qian, Ye-jian, 2023. "Energy analysis and control scheme optimizations for a recuperated gas turbine with variable power offtakes/inputs," Energy, Elsevier, vol. 285(C).
    4. Tsoutsanis, Elias & Meskin, Nader & Benammar, Mohieddine & Khorasani, Khashayar, 2016. "A dynamic prognosis scheme for flexible operation of gas turbines," Applied Energy, Elsevier, vol. 164(C), pages 686-701.
    5. Zhou, Yanting & Ma, Zhongjing & Shi, Xingyu & Zou, Suli, 2024. "Multi-agent optimal scheduling for integrated energy system considering the global carbon emission constraint," Energy, Elsevier, vol. 288(C).
    6. Park, Yeseul & Choi, Minsung & Kim, Kibeom & Li, Xinzhuo & Jung, Chanho & Na, Sangkyung & Choi, Gyungmin, 2020. "Prediction of operating characteristics for industrial gas turbine combustor using an optimized artificial neural network," Energy, Elsevier, vol. 213(C).
    7. Park, Yeseul & Choi, Minsung & Choi, Gyungmin, 2022. "Fault detection of industrial large-scale gas turbine for fuel distribution characteristics in start-up procedure using artificial neural network method," Energy, Elsevier, vol. 251(C).
    8. Zhao, Hang & Liao, Zengbu & Liu, Jinxin & Li, Ming & Liu, Wei & Wang, Lei & Song, Zhiping, 2022. "A highly robust thrust estimation method with dissimilar redundancy framework for gas turbine engine," Energy, Elsevier, vol. 245(C).
    9. Xiong, Yongkang & Zeng, Zhenfeng & Xin, Jianbo & Song, Guanhong & Xia, Yonghong & Xu, Zaide, 2023. "Renewable energy time series regulation strategy considering grid flexible load and N-1 faults," Energy, Elsevier, vol. 284(C).
    10. Tsoutsanis, Elias & Meskin, Nader, 2017. "Derivative-driven window-based regression method for gas turbine performance prognostics," Energy, Elsevier, vol. 128(C), pages 302-311.
    11. Zhou, Dengji & Yao, Qinbo & Wu, Hang & Ma, Shixi & Zhang, Huisheng, 2020. "Fault diagnosis of gas turbine based on partly interpretable convolutional neural networks," Energy, Elsevier, vol. 200(C).
    12. Chen, Yu-Zhi & Tsoutsanis, Elias & Xiang, Heng-Chao & Li, Yi-Guang & Zhao, Jun-Jie, 2022. "A dynamic performance diagnostic method applied to hydrogen powered aero engines operating under transient conditions," Applied Energy, Elsevier, vol. 317(C).
    13. Wei, Zhiyuan & Zhang, Shuguang & Jafari, Soheil & Nikolaidis, Theoklis, 2022. "Self-enhancing model-based control for active transient protection and thrust response improvement of gas turbine aero-engines," Energy, Elsevier, vol. 242(C).
    14. Kim, Sangjo, 2021. "A new performance adaptation method for aero gas turbine engines based on large amounts of measured data," Energy, Elsevier, vol. 221(C).
    15. Chen, Yu-Zhi & Tsoutsanis, Elias & Wang, Chen & Gou, Lin-Feng, 2023. "A time-series turbofan engine successive fault diagnosis under both steady-state and dynamic conditions," Energy, Elsevier, vol. 263(PD).
    16. Tahan, Mohammadreza & Tsoutsanis, Elias & Muhammad, Masdi & Abdul Karim, Z.A., 2017. "Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review," Applied Energy, Elsevier, vol. 198(C), pages 122-144.
    17. Tsoutsanis, Elias & Meskin, Nader & Benammar, Mohieddine & Khorasani, Khashayar, 2014. "A component map tuning method for performance prediction and diagnostics of gas turbine compressors," Applied Energy, Elsevier, vol. 135(C), pages 572-585.
    18. Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
    19. Wang, Tao & Zhang, Yu & Yin, Zhao & Qiu, Liang & Hua, Yang & Zhang, Xian-wen & Qian, Ye-jian, 2023. "Decoupling control scheme optimization and energy analysis for a triaxial gas turbine based on the variable power offtakes/inputs," Energy, Elsevier, vol. 262(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yu-Zhi & Tsoutsanis, Elias & Wang, Chen & Gou, Lin-Feng, 2023. "A time-series turbofan engine successive fault diagnosis under both steady-state and dynamic conditions," Energy, Elsevier, vol. 263(PD).
    2. Chen, Yu-Zhi & Tsoutsanis, Elias & Xiang, Heng-Chao & Li, Yi-Guang & Zhao, Jun-Jie, 2022. "A dynamic performance diagnostic method applied to hydrogen powered aero engines operating under transient conditions," Applied Energy, Elsevier, vol. 317(C).
    3. Cheng, Xianda & Zheng, Haoran & Yang, Qian & Zheng, Peiying & Dong, Wei, 2023. "Surrogate model-based real-time gas path fault diagnosis for gas turbines under transient conditions," Energy, Elsevier, vol. 278(PA).
    4. Wei, Zhiyuan & Zhang, Shuguang & Ding, Shuiting, 2024. "Fast uncertainty assessment of in-service thrust control for turbofan engines: An equivalent model using Taylor expansion," Energy, Elsevier, vol. 308(C).
    5. Chen, Yu-Zhi & Zhao, Xu-Dong & Xiang, Heng-Chao & Tsoutsanis, Elias, 2021. "A sequential model-based approach for gas turbine performance diagnostics," Energy, Elsevier, vol. 220(C).
    6. Huang, Yufeng & Tao, Jun & Zhao, Junyi & Sun, Gang & Yin, Kai & Zhai, Junyi, 2023. "Graph structure embedded with physical constraints-based information fusion network for interpretable fault diagnosis of aero-engine," Energy, Elsevier, vol. 283(C).
    7. Irani, Fatemeh Negar & Soleimani, Mohammadjavad & Yadegar, Meysam & Meskin, Nader, 2024. "Deep transfer learning strategy in intelligent fault diagnosis of gas turbines based on the Koopman operator," Applied Energy, Elsevier, vol. 365(C).
    8. Wei, Zhiyuan & Zhang, Shuguang & Jafari, Soheil & Nikolaidis, Theoklis, 2022. "Self-enhancing model-based control for active transient protection and thrust response improvement of gas turbine aero-engines," Energy, Elsevier, vol. 242(C).
    9. Long, Zhenhua & Bai, Mingliang & Ren, Minghao & Liu, Jinfu & Yu, Daren, 2023. "Fault detection and isolation of aeroengine combustion chamber based on unscented Kalman filter method fusing artificial neural network," Energy, Elsevier, vol. 272(C).
    10. Muhammad Baqir Hashmi & Mohammad Mansouri & Amare Desalegn Fentaye & Shazaib Ahsan & Konstantinos Kyprianidis, 2024. "An Artificial Neural Network-Based Fault Diagnostics Approach for Hydrogen-Fueled Micro Gas Turbines," Energies, MDPI, vol. 17(3), pages 1-23, February.
    11. Kiaee, Mehrdad & Tousi, A.M., 2021. "Vector-based deterioration index for gas turbine gas-path prognostics modeling framework," Energy, Elsevier, vol. 216(C).
    12. Kang, Do Won & Kim, Tong Seop, 2018. "Model-based performance diagnostics of heavy-duty gas turbines using compressor map adaptation," Applied Energy, Elsevier, vol. 212(C), pages 1345-1359.
    13. Zagorowska, Marta & Schulze Spüntrup, Frederik & Ditlefsen, Arne-Marius & Imsland, Lars & Lunde, Erling & Thornhill, Nina F., 2020. "Adaptive detection and prediction of performance degradation in off-shore turbomachinery," Applied Energy, Elsevier, vol. 268(C).
    14. Yu, Bosheng & Cao, Li'ang & Xie, Daxing & Chen, Jinwei & Zhang, Huisheng, 2025. "Fault diagnosis of gas turbine based on feature fusion cascade neural network," Energy, Elsevier, vol. 321(C).
    15. Zhao, Junjie & Li, Yi-Guang & Sampath, Suresh, 2023. "A hierarchical structure built on physical and data-based information for intelligent aero-engine gas path diagnostics," Applied Energy, Elsevier, vol. 332(C).
    16. Tahan, Mohammadreza & Tsoutsanis, Elias & Muhammad, Masdi & Abdul Karim, Z.A., 2017. "Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review," Applied Energy, Elsevier, vol. 198(C), pages 122-144.
    17. Zhao, Hang & Zhai, Xiongfei & Liao, Zengbu & Li, Zichen & Song, Zhiping, 2025. "Gas turbine thrust estimation in sensor drift scenarios using a three-stage multi-target domain adaptation method," Energy, Elsevier, vol. 314(C).
    18. Mingliang Bai & Jinfu Liu & Yujia Ma & Xinyu Zhao & Zhenhua Long & Daren Yu, 2020. "Long Short-Term Memory Network-Based Normal Pattern Group for Fault Detection of Three-Shaft Marine Gas Turbine," Energies, MDPI, vol. 14(1), pages 1-22, December.
    19. Zhang, Xinhai & Wang, Kang & Geng, Jia & Li, Ming & Song, Zhiping, 2024. "A fault-tolerant acceleration control strategy for turbofan engine based on multi-layer perceptron with exponential Gumbel loss," Energy, Elsevier, vol. 294(C).
    20. Feng, Hailong & Liu, Bei & Xu, Maojun & Li, Ming & Song, Zhiping, 2024. "Model-based deduction learning control: A novel method for optimizing gas turbine engine afterburner transient," Energy, Elsevier, vol. 292(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:321:y:2025:i:c:s036054422501000x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.