IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v332y2023ics0306261922017779.html
   My bibliography  Save this article

A hierarchical structure built on physical and data-based information for intelligent aero-engine gas path diagnostics

Author

Listed:
  • Zhao, Junjie
  • Li, Yi-Guang
  • Sampath, Suresh

Abstract

Future trends in engine health management (EHM) systems are information fusion, advanced analytical methods, and the concept of the Intelligent Engines. Machine Learning (ML)-based aero-engine gas path diagnostic methods are promising under the motivation of these trends. However, previous ML-based diagnostic structures are rarely applied in actual engineering practice because they are purely mathematical and lack physical insight or are limited by the error accumulation problem. Developing an accurate, flexible and interpretable intelligent diagnostic method has always posed a challenge, especially when physical knowledge is also available for more diagnostic information. Instead of modifying and applying existing ML methods for classification or regression, this study proposes a novel hierarchical diagnostic method to get insight into the physical systems, build hierarchies automatically, and recommend the classification structures. The proposed hierarchical diagnostic method is evaluated against a NASA model high-bypass two-spool turbofan engine. NASA's blind test case results show that Kappa Coefficient of the proposed hierarchical diagnostic method is 0.693 and is at least 0.008 higher than the other diagnostic methods in the open literature. It has been proved that the proposed method can quantify the dependence relationships between the fault classes for enhanced diagnostic information, recommend the best diagnostic structure for reduced complexity, and solve the error accumulation problem for improved diagnostic accuracy. The proposed method could support intelligent condition monitoring systems by effectively exploiting physical and data-based information for improved model interpretability, model flexibility, diagnostic visibility, diagnostic accuracy, and diagnostic reliability.

Suggested Citation

  • Zhao, Junjie & Li, Yi-Guang & Sampath, Suresh, 2023. "A hierarchical structure built on physical and data-based information for intelligent aero-engine gas path diagnostics," Applied Energy, Elsevier, vol. 332(C).
  • Handle: RePEc:eee:appene:v:332:y:2023:i:c:s0306261922017779
    DOI: 10.1016/j.apenergy.2022.120520
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922017779
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120520?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Y.G. & Nilkitsaranont, P., 2009. "Gas turbine performance prognostic for condition-based maintenance," Applied Energy, Elsevier, vol. 86(10), pages 2152-2161, October.
    2. Li, Y.G. & Pilidis, P., 2010. "GA-based design-point performance adaptation and its comparison with ICM-based approach," Applied Energy, Elsevier, vol. 87(1), pages 340-348, January.
    3. Bai, Mingliang & Yang, Xusheng & Liu, Jinfu & Liu, Jiao & Yu, Daren, 2021. "Convolutional neural network-based deep transfer learning for fault detection of gas turbine combustion chambers," Applied Energy, Elsevier, vol. 302(C).
    4. Kang, Do Won & Kim, Tong Seop, 2018. "Model-based performance diagnostics of heavy-duty gas turbines using compressor map adaptation," Applied Energy, Elsevier, vol. 212(C), pages 1345-1359.
    5. Orozco, Dimas José Rúa & Venturini, Osvaldo José & Escobar Palacio, José Carlos & del Olmo, Oscar Almazán, 2017. "A new methodology of thermodynamic diagnosis, using the thermoeconomic method together with an artificial neural network (ANN): A case study of an externally fired gas turbine (EFGT)," Energy, Elsevier, vol. 123(C), pages 20-35.
    6. Tamilselvan, Prasanna & Wang, Pingfeng, 2013. "Failure diagnosis using deep belief learning based health state classification," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 124-135.
    7. Joly, R. B. & Ogaji, S. O. T. & Singh, R. & Probert, S. D., 2004. "Gas-turbine diagnostics using artificial neural-networks for a high bypass ratio military turbofan engine," Applied Energy, Elsevier, vol. 78(4), pages 397-418, August.
    8. Zhou, Dengji & Yao, Qinbo & Wu, Hang & Ma, Shixi & Zhang, Huisheng, 2020. "Fault diagnosis of gas turbine based on partly interpretable convolutional neural networks," Energy, Elsevier, vol. 200(C).
    9. Chen, Yu-Zhi & Tsoutsanis, Elias & Xiang, Heng-Chao & Li, Yi-Guang & Zhao, Jun-Jie, 2022. "A dynamic performance diagnostic method applied to hydrogen powered aero engines operating under transient conditions," Applied Energy, Elsevier, vol. 317(C).
    10. Tahan, Mohammadreza & Tsoutsanis, Elias & Muhammad, Masdi & Abdul Karim, Z.A., 2017. "Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review," Applied Energy, Elsevier, vol. 198(C), pages 122-144.
    11. Ogaji, S. O. T. & Singh, R. & Probert, S. D., 2002. "Multiple-sensor fault-diagnoses for a 2-shaft stationary gas-turbine," Applied Energy, Elsevier, vol. 71(4), pages 321-339, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Xianda & Zheng, Haoran & Yang, Qian & Zheng, Peiying & Dong, Wei, 2023. "Surrogate model-based real-time gas path fault diagnosis for gas turbines under transient conditions," Energy, Elsevier, vol. 278(PA).
    2. Chen, Yu-Zhi & Zhao, Xu-Dong & Xiang, Heng-Chao & Tsoutsanis, Elias, 2021. "A sequential model-based approach for gas turbine performance diagnostics," Energy, Elsevier, vol. 220(C).
    3. Kim, Min Jae & Kim, Jeong Ho & Kim, Tong Seop, 2018. "The effects of internal leakage on the performance of a micro gas turbine," Applied Energy, Elsevier, vol. 212(C), pages 175-184.
    4. Bai, Mingliang & Yang, Xusheng & Liu, Jinfu & Liu, Jiao & Yu, Daren, 2021. "Convolutional neural network-based deep transfer learning for fault detection of gas turbine combustion chambers," Applied Energy, Elsevier, vol. 302(C).
    5. Long, Zhenhua & Bai, Mingliang & Ren, Minghao & Liu, Jinfu & Yu, Daren, 2023. "Fault detection and isolation of aeroengine combustion chamber based on unscented Kalman filter method fusing artificial neural network," Energy, Elsevier, vol. 272(C).
    6. Mingliang Bai & Jinfu Liu & Yujia Ma & Xinyu Zhao & Zhenhua Long & Daren Yu, 2020. "Long Short-Term Memory Network-Based Normal Pattern Group for Fault Detection of Three-Shaft Marine Gas Turbine," Energies, MDPI, vol. 14(1), pages 1-22, December.
    7. Chen, Yu-Zhi & Tsoutsanis, Elias & Xiang, Heng-Chao & Li, Yi-Guang & Zhao, Jun-Jie, 2022. "A dynamic performance diagnostic method applied to hydrogen powered aero engines operating under transient conditions," Applied Energy, Elsevier, vol. 317(C).
    8. Shun Dai & Xiaoyi Zhang & Mingyu Luo, 2024. "A Novel Data-Driven Approach for Predicting the Performance Degradation of a Gas Turbine," Energies, MDPI, vol. 17(4), pages 1-17, February.
    9. Zhu, Yunlong & Dong, Zhe & Cheng, Zhonghua & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2023. "Neural network extended state-observer for energy system monitoring," Energy, Elsevier, vol. 263(PA).
    10. Zagorowska, Marta & Schulze Spüntrup, Frederik & Ditlefsen, Arne-Marius & Imsland, Lars & Lunde, Erling & Thornhill, Nina F., 2020. "Adaptive detection and prediction of performance degradation in off-shore turbomachinery," Applied Energy, Elsevier, vol. 268(C).
    11. Rahmoune, Mohamed Ben & Hafaifa, Ahmed & Kouzou, Abdellah & Chen, XiaoQi & Chaibet, Ahmed, 2021. "Gas turbine monitoring using neural network dynamic nonlinear autoregressive with external exogenous input modelling," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 23-47.
    12. Muhammad Baqir Hashmi & Mohammad Mansouri & Amare Desalegn Fentaye & Shazaib Ahsan & Konstantinos Kyprianidis, 2024. "An Artificial Neural Network-Based Fault Diagnostics Approach for Hydrogen-Fueled Micro Gas Turbines," Energies, MDPI, vol. 17(3), pages 1-23, February.
    13. Chen, Yu-Zhi & Tsoutsanis, Elias & Wang, Chen & Gou, Lin-Feng, 2023. "A time-series turbofan engine successive fault diagnosis under both steady-state and dynamic conditions," Energy, Elsevier, vol. 263(PD).
    14. Linhai Zhu & Jinfu Liu & Yujia Ma & Weixing Zhou & Daren Yu, 2020. "A Corrected Equilibrium Manifold Expansion Model for Gas Turbine System Simulation and Control," Energies, MDPI, vol. 13(18), pages 1-18, September.
    15. Feng Lu & Jinquan Huang & Yiqiu Lv, 2013. "Gas Path Health Monitoring for a Turbofan Engine Based on a Nonlinear Filtering Approach," Energies, MDPI, vol. 6(1), pages 1-22, January.
    16. Liu, Xingchen & Sun, Qiuzhuang & Ye, Zhi-Sheng & Yildirim, Murat, 2021. "Optimal multi-type inspection policy for systems with imperfect online monitoring," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    17. Tsoutsanis, Elias & Meskin, Nader & Benammar, Mohieddine & Khorasani, Khashayar, 2014. "A component map tuning method for performance prediction and diagnostics of gas turbine compressors," Applied Energy, Elsevier, vol. 135(C), pages 572-585.
    18. Tsoutsanis, Elias & Meskin, Nader & Benammar, Mohieddine & Khorasani, Khashayar, 2016. "A dynamic prognosis scheme for flexible operation of gas turbines," Applied Energy, Elsevier, vol. 164(C), pages 686-701.
    19. Kiaee, Mehrdad & Tousi, A.M., 2021. "Vector-based deterioration index for gas turbine gas-path prognostics modeling framework," Energy, Elsevier, vol. 216(C).
    20. Paweł Ziółkowski & Marta Drosińska-Komor & Jerzy Głuch & Łukasz Breńkacz, 2023. "Review of Methods for Diagnosing the Degradation Process in Power Units Cooperating with Renewable Energy Sources Using Artificial Intelligence," Energies, MDPI, vol. 16(17), pages 1-28, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:332:y:2023:i:c:s0306261922017779. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.