IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223025148.html
   My bibliography  Save this article

Graph structure embedded with physical constraints-based information fusion network for interpretable fault diagnosis of aero-engine

Author

Listed:
  • Huang, Yufeng
  • Tao, Jun
  • Zhao, Junyi
  • Sun, Gang
  • Yin, Kai
  • Zhai, Junyi

Abstract

Fault diagnosis is essential for ensuring the safety and reliability of aero-engines. Current performance-based fault diagnosis methods typically establish a mapping between measurable parameters and engine states, without taking into account the inherent physical constraints of multimodal information. In this study, a novel graph structure embedded with physical constraints is proposed to effectively fuse sensor information and physical-based model (PBM) simulation information. Since the fault information is primarily manifested in the sensor data rather than the PBM data, the probability distribution between these two types of data can serve as a constraint for constructing the edges in the graph, as it reflects the physical association among the sample points. Selected sensor parameters are used as node characteristics in the graph. A self-supervised representation learning training structure based on graph convolutional network and canonical correlation analysis can effectively utilize labeled and unlabeled data. Furthermore, a robust statistics method is embedded into the training architecture to interpret the behavior of the model by identifying the impact of data samples. The verification results indicate that the proposed model can effectively perform multimodal information fusion and achieve more efficient and high-accuracy component-level fault diagnosis.

Suggested Citation

  • Huang, Yufeng & Tao, Jun & Zhao, Junyi & Sun, Gang & Yin, Kai & Zhai, Junyi, 2023. "Graph structure embedded with physical constraints-based information fusion network for interpretable fault diagnosis of aero-engine," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223025148
    DOI: 10.1016/j.energy.2023.129120
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223025148
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129120?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223025148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.