Managing remaining useful life of cyber-aeroengine systems using a graph spatio-temporal attention recurrent network with phase-lag index
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2024.132924
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Manuel Arias Chao & Chetan Kulkarni & Kai Goebel & Olga Fink, 2021. "Aircraft Engine Run-to-Failure Dataset under Real Flight Conditions for Prognostics and Diagnostics," Data, MDPI, vol. 6(1), pages 1-14, January.
- Huang, Yufeng & Tao, Jun & Zhao, Junyi & Sun, Gang & Yin, Kai & Zhai, Junyi, 2023. "Graph structure embedded with physical constraints-based information fusion network for interpretable fault diagnosis of aero-engine," Energy, Elsevier, vol. 283(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yu, Bosheng & Cao, Li'ang & Xie, Daxing & Chen, Jinwei & Zhang, Huisheng, 2025. "Fault diagnosis of gas turbine based on feature fusion cascade neural network," Energy, Elsevier, vol. 321(C).
- Yang, Jing & Zhang, Minglan & Wang, Xiaomin, 2025. "Prior task aware-augmented meta learning for early state-of-health estimation of lithium-ion batteries," Energy, Elsevier, vol. 322(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Basora, Luis & Viens, Arthur & Chao, Manuel Arias & Olive, Xavier, 2025. "A benchmark on uncertainty quantification for deep learning prognostics," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
- Jiaxian Chen & Dongpeng Li & Ruyi Huang & Zhuyun Chen & Weihua Li, 2025. "A transfer regression network-based adaptive calibration method for remaining useful life prediction considering individual discrepancies in the degradation process of machinery," Journal of Intelligent Manufacturing, Springer, vol. 36(4), pages 2767-2783, April.
- Zhao, Dezun & Cai, Wenbin & Cui, Lingli, 2025. "Multi-perception graph convolutional tree-embedded network for aero-engine bearing health monitoring with unbalanced data," Reliability Engineering and System Safety, Elsevier, vol. 257(PB).
- Wang, Wei & Song, Honghao & Si, Shubin & Lu, Wenhao & Cai, Zhiqiang, 2024. "Data augmentation based on diffusion probabilistic model for remaining useful life estimation of aero-engines," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
- Liao, Zengbu & Zhan, Keyi & Zhao, Hang & Deng, Yuntao & Geng, Jia & Chen, Xuefeng & Song, Zhiping, 2024. "Addressing class-imbalanced learning in real-time aero-engine gas-path fault diagnosis via feature filtering and mapping," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
- Xiao, Dasheng & Lin, Zhifu & Yu, Aiyang & Tang, Ke & Xiao, Hong, 2024. "Data-driven method embedded physical knowledge for entire lifecycle degradation monitoring in aircraft engines," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
- Zhou, Maohui & Li, Yanjun & Cao, Yuyuan & Ma, Xinyu & Xu, Zhenteng, 2025. "Physics-informed spatio-temporal hybrid neural networks for predicting remaining useful life in aircraft engine," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
- Wang, Yilin & Li, Yuanxiang & Zhang, Yuxuan & Lei, Jia & Yu, Yifei & Zhang, Tongtong & Yang, Yongshen & Zhao, Honghua, 2024. "Incorporating prior knowledge into self-supervised representation learning for long PHM signal," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
- Wang, Yilin & Shen, Lei & Zhang, Yuxuan & Li, Yuanxiang & Zhang, Ruixin & Yang, Yongshen, 2023. "Self-supervised Health Representation Decomposition based on contrast learning," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
- Chen, Jiaxian & Li, Dongpeng & Huang, Ruyi & Chen, Zhuyun & Li, Weihua, 2023. "Aero-engine remaining useful life prediction method with self-adaptive multimodal data fusion and cluster-ensemble transfer regression," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
- Nejjar, Ismail & Geissmann, Fabian & Zhao, Mengjie & Taal, Cees & Fink, Olga, 2024. "Domain adaptation via alignment of operation profile for Remaining Useful Lifetime prediction," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
- Salman Khalid & Jinwoo Song & Muhammad Muzammil Azad & Muhammad Umar Elahi & Jaehun Lee & Soo-Ho Jo & Heung Soo Kim, 2023. "A Comprehensive Review of Emerging Trends in Aircraft Structural Prognostics and Health Management," Mathematics, MDPI, vol. 11(18), pages 1-42, September.
- Bajarunas, Kristupas & Baptista, Marcia L. & Goebel, Kai & Chao, Manuel Arias, 2024. "Health index estimation through integration of general knowledge with unsupervised learning," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
- Zhang, Songyang & Dinavahi, Venkata & Liang, Tian, 2025. "Towards hydrogen-powered electric aircraft: Physics-informed machine learning based multi-domain modeling and real-time digital twin emulation on FPGA," Energy, Elsevier, vol. 322(C).
- Wang, Jianwen & Song, Yueheng & He, Tian, 2025. "A novel adaptive monitoring framework for detecting the abnormal states of aero-engines with maneuvering flight data," Reliability Engineering and System Safety, Elsevier, vol. 258(C).
- Yu, Bosheng & Cao, Li'ang & Xie, Daxing & Chen, Jinwei & Zhang, Huisheng, 2025. "Fault diagnosis of gas turbine based on feature fusion cascade neural network," Energy, Elsevier, vol. 321(C).
- Zhou, Liang & Wang, Huawei & Xu, Shanshan, 2023. "Aero-engine prognosis strategy based on multi-scale feature fusion and multi-task parallel learning," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
- Llasag Rosero, Raúl & Silva, Catarina & Ribeiro, Bernardete & Albisser, Melania & Brutsche, Martin & Arias Chao, Manuel, 2025. "Label synchronization strategies for hybrid federated learning," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
- Shih-Hsien Tseng & Khoa-Dang Tran, 2024. "Predicting maintenance through an attention long short-term memory projected model," Journal of Intelligent Manufacturing, Springer, vol. 35(2), pages 807-824, February.
- Neshat, Mehdi & Sergiienko, Nataliia Y. & Rafiee, Ashkan & Mirjalili, Seyedali & Gandomi, Amir H. & Boland, John, 2024. "MetaWave Learner: Predicting wave farms power output using effective meta-learner deep gradient boosting model: A case study from Australian coasts," Energy, Elsevier, vol. 304(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224026987. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.