IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v258y2025ics0951832025001139.html
   My bibliography  Save this article

A novel adaptive monitoring framework for detecting the abnormal states of aero-engines with maneuvering flight data

Author

Listed:
  • Wang, Jianwen
  • Song, Yueheng
  • He, Tian

Abstract

Abnormal state monitoring of aero-engine is crucial for ensuring the safe and reliable operation of aircraft. Currently, the common approach involves analyzing data from onboard sensors. However, this method faces significant challenges during maneuvering flight due to the considerable data disparities across different flight sorties. This paper proposes an adaptive anomaly monitoring framework for aero-engines operating under diverse flight conditions. Firstly, the flight data is processed using the Mean-Standard Deviation Method to achieve automatic scene segmentation under complex flight conditions. Then, a monitoring model combining the Sparrow Search Algorithm (SSA) and Kmedoids is built for adaptive monitoring under each set of flight conditions. On this basis, the indicators are devised to accurately reflect the risk of abnormal situations for state monitoring. Finally, the proposed method is verified by actual flight data and shows higher accuracy and lower false alarm rate (FAR) in monitoring both abrupt and gradual abnormal situations of aero-engines. Additionally, the method has the capability to automatically identify the parameters corresponding to anomalies. This framework not only enables adaptive monitoring and early warning of aero-engine abnormal states in the absence of prior fault information but also supports comprehensive fault tracing and analysis.

Suggested Citation

  • Wang, Jianwen & Song, Yueheng & He, Tian, 2025. "A novel adaptive monitoring framework for detecting the abnormal states of aero-engines with maneuvering flight data," Reliability Engineering and System Safety, Elsevier, vol. 258(C).
  • Handle: RePEc:eee:reensy:v:258:y:2025:i:c:s0951832025001139
    DOI: 10.1016/j.ress.2025.110910
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025001139
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.110910?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Pan, Wei-Huang & Feng, Yun-Wen & Lu, Cheng & Liu, Jia-Qi, 2023. "Analyzing the operation reliability of aeroengine using Quick Access Recorder flight data," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    2. Changan Ren & Jichong Lei & Jie Liu & Jun Hong & Hong Hu & Xiaoyong Fang & Cannan Yi & Zhiqiang Peng & Xiaohua Yang & Tao Yu, 2024. "Research on an Intelligent Fault Diagnosis Method for Small Modular Reactors," Energies, MDPI, vol. 17(16), pages 1-15, August.
    3. Zhang, Yong & Xin, Yuqi & Liu, Zhi-wei & Chi, Ming & Ma, Guijun, 2022. "Health status assessment and remaining useful life prediction of aero-engine based on BiGRU and MMoE," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    4. Zhang, Xinwei & Feng, Yong & Chen, Jinglong & Liu, Zijun & Wang, Jun & Huang, Hong, 2024. "Knowledge distillation-optimized two-stage anomaly detection for liquid rocket engine with missing multimodal data," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    5. Zhou, Hang & Farsi, Maryam & Harrison, Andrew & Parlikad, Ajith Kumar & Brintrup, Alexandra, 2023. "Civil aircraft engine operation life resilient monitoring via usage trajectory mapping on the reliability contour," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    6. Huang, Yufeng & Tao, Jun & Zhao, Junyi & Sun, Gang & Yin, Kai & Zhai, Junyi, 2023. "Graph structure embedded with physical constraints-based information fusion network for interpretable fault diagnosis of aero-engine," Energy, Elsevier, vol. 283(C).
    7. Tahan, Mohammadreza & Tsoutsanis, Elias & Muhammad, Masdi & Abdul Karim, Z.A., 2017. "Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review," Applied Energy, Elsevier, vol. 198(C), pages 122-144.
    8. Yan, Shen & Shao, Haidong & Min, Zhishan & Peng, Jiangji & Cai, Baoping & Liu, Bin, 2023. "FGDAE: A new machinery anomaly detection method towards complex operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    9. Xiao, Dasheng & Lin, Zhifu & Yu, Aiyang & Tang, Ke & Xiao, Hong, 2024. "Data-driven method embedded physical knowledge for entire lifecycle degradation monitoring in aircraft engines," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    10. Yunpeng Cao & Junqi Luan & Guodong Han & Xinran Lv & Shuying Li, 2019. "A Marine Gas Turbine Fault Diagnosis Method Based on Endogenous Irreversible Loss," Energies, MDPI, vol. 12(24), pages 1-18, December.
    11. Zhang, Chen & Hu, Di & Yang, Tao, 2022. "Anomaly detection and diagnosis for wind turbines using long short-term memory-based stacked denoising autoencoders and XGBoost," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    12. Azar, Kamyar & Hajiakhondi-Meybodi, Zohreh & Naderkhani, Farnoosh, 2022. "Semi-supervised clustering-based method for fault diagnosis and prognosis: A case study," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    13. Coelho e Silva, Lucas & Murça, Mayara Condé Rocha, 2023. "A data analytics framework for anomaly detection in flight operations," Journal of Air Transport Management, Elsevier, vol. 110(C).
    14. Chao, Qun & Shao, Yuechen & Liu, Chengliang & Yang, Xiaoxue, 2023. "Health evaluation of axial piston pumps based on density weighted support vector data description," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Haoxuan & Wang, Bingsen & Zio, Enrico & Lei, Zihao & Wen, Guangrui & Chen, Xuefeng, 2025. "Unsupervised anomaly detection of machines operating under time-varying conditions: DCD-VAE enabled feature disentanglement of operating conditions and states," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    2. Peng, Dandan & Desmet, Wim & Gryllias, Konstantinos, 2025. "Reconstruction-based Deep Unsupervised Adaptive Threshold Support Vector Data Description for wind turbine anomaly detection," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    3. Xiao, Dasheng & Lin, Zhifu & Yu, Aiyang & Tang, Ke & Xiao, Hong, 2024. "Data-driven method embedded physical knowledge for entire lifecycle degradation monitoring in aircraft engines," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    4. Zhang, Ruixing & An, Liqiang & He, Lun & Yang, Xinmeng & Huang, Zenghao, 2024. "Reliability analysis and inverse optimization method for floating wind turbines driven by dual meta-models combining transient-steady responses," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    5. Leoni, Leonardo & De Carlo, Filippo & Abaei, Mohammad Mahdi & BahooToroody, Ahmad & Tucci, Mario, 2023. "Failure diagnosis of a compressor subjected to surge events: A data-driven framework," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    6. Tang, Shengnan & Zhu, Yong & Yuan, Shouqi, 2022. "Intelligent fault identification of hydraulic pump using deep adaptive normalized CNN and synchrosqueezed wavelet transform," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    7. Jiang, Shengyu & He, Rui & Chen, Guoming & Zhu, Yuan & Shi, Jiaming & Liu, Kang & Chang, Yuanjiang, 2023. "Semi-supervised health assessment of pipeline systems based on optical fiber monitoring," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    8. Zheng, Minglei & Man, Junfeng & Wang, Dian & Chen, Yanan & Li, Qianqian & Liu, Yong, 2023. "Semi-supervised multivariate time series anomaly detection for wind turbines using generator SCADA data," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    9. Yu, Bosheng & Cao, Li'ang & Xie, Daxing & Chen, Jinwei & Zhang, Huisheng, 2025. "Fault diagnosis of gas turbine based on feature fusion cascade neural network," Energy, Elsevier, vol. 321(C).
    10. Tong, Jianfeng & Liu, Zhenxing & Zhang, Yong & Zheng, Xiujuan & Jin, Junyang, 2023. "Improved multi-gate mixture-of-experts framework for multi-step prediction of gas load," Energy, Elsevier, vol. 282(C).
    11. Lin, Yan-Hui & Chang, Liang & Guan, Lu-Xin, 2024. "Enhanced stochastic recurrent hybrid model for RUL Predictions via Semi-supervised learning," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    12. Zhu, Yunyi & Xie, Bin & Wang, Anqi & Qian, Zheng, 2025. "Wind turbine fault detection and identification via self-attention-based dynamic graph representation learning and variable-level normalizing flow," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    13. Liu, Jiale & Wang, Huan, 2024. "A brain-inspired energy-efficient Wide Spiking Residual Attention Framework for intelligent fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    14. Kamei, Sayaka & Taghipour, Sharareh, 2023. "A comparison study of centralized and decentralized federated learning approaches utilizing the transformer architecture for estimating remaining useful life," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    15. Mingliang Bai & Jinfu Liu & Yujia Ma & Xinyu Zhao & Zhenhua Long & Daren Yu, 2020. "Long Short-Term Memory Network-Based Normal Pattern Group for Fault Detection of Three-Shaft Marine Gas Turbine," Energies, MDPI, vol. 14(1), pages 1-22, December.
    16. Feng Lu & Jipeng Jiang & Jinquan Huang & Xiaojie Qiu, 2018. "An Iterative Reduced KPCA Hidden Markov Model for Gas Turbine Performance Fault Diagnosis," Energies, MDPI, vol. 11(7), pages 1-21, July.
    17. Zhou, Dengji & Yao, Qinbo & Wu, Hang & Ma, Shixi & Zhang, Huisheng, 2020. "Fault diagnosis of gas turbine based on partly interpretable convolutional neural networks," Energy, Elsevier, vol. 200(C).
    18. Yunpeng Cao & Xinran Lv & Guodong Han & Junqi Luan & Shuying Li, 2019. "Research on Gas-Path Fault-Diagnosis Method of Marine Gas Turbine Based on Exergy Loss and Probabilistic Neural Network," Energies, MDPI, vol. 12(24), pages 1-17, December.
    19. Milan V. Petrovic & Srdjan Milic & Djordje Petkovic & Teodora Madzar & Nikola M. Markovic, 2025. "Improving Steam Turbine Plants Performance Through Advanced Testing and Simulation," Energies, MDPI, vol. 18(7), pages 1-18, March.
    20. Xin Li & Fengrong Bi & Lipeng Zhang & Xiao Yang & Guichang Zhang, 2022. "An Engine Fault Detection Method Based on the Deep Echo State Network and Improved Multi-Verse Optimizer," Energies, MDPI, vol. 15(3), pages 1-17, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:258:y:2025:i:c:s0951832025001139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.