IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v257y2025ipbs0951832025000900.html
   My bibliography  Save this article

Multi-perception graph convolutional tree-embedded network for aero-engine bearing health monitoring with unbalanced data

Author

Listed:
  • Zhao, Dezun
  • Cai, Wenbin
  • Cui, Lingli

Abstract

In engineering, severely unbalanced data from aero-engine bearings leads data-driven methods to favor normal samples and disorganize decision boundaries, triggering poor performance. Although graph networks alleviate negative impact of unbalanced samples, they have limitations on single information transmission and graph adaptive updating. As such, a multi-perception graph convolutional tree-embedded network (MPGCTN) is developed. First, a dual-channel feature graph construction method is designed to convert high-dimensional mappings into feature distance and feature dynamic graphs, boosting diverse fault information. Then, multi-scale Chebyshev graph convolutional layers with multi-perception learning are constructed as the backbone network, capturing special and shared information through discrepancy and similarity constraints. Furthermore, a tree embedded decision layer is proposed as the rebuilt output layer to gradually recognize fault locations and sizes. Finally, a triple-loss training strategy is developed to update the parameters of the MPGCTN for deep feature extraction and hierarchical decision. Experimental results of two aero-engine bearing datasets demonstrate that the MPGCTN attains the classification accuracy of 97.54 % and 98.04 % with an unbalanced ratio of 20:1, outperforming state-of-the-art methods. From the above results, the MPGCTN exhibits excellent accuracy in gradually determining fault types and severities of aero-engine bearings with unbalanced data, consistent with the fundamental principles of maintenance.

Suggested Citation

  • Zhao, Dezun & Cai, Wenbin & Cui, Lingli, 2025. "Multi-perception graph convolutional tree-embedded network for aero-engine bearing health monitoring with unbalanced data," Reliability Engineering and System Safety, Elsevier, vol. 257(PB).
  • Handle: RePEc:eee:reensy:v:257:y:2025:i:pb:s0951832025000900
    DOI: 10.1016/j.ress.2025.110888
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025000900
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.110888?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Dezun & Huang, Xiaofan & Wang, Tianyang & Cui, Lingli, 2025. "Generalized reassigning transform: Algorithm and applications," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
    2. Zheng, Minglei & Man, Junfeng & Wang, Dian & Chen, Yanan & Li, Qianqian & Liu, Yong, 2023. "Semi-supervised multivariate time series anomaly detection for wind turbines using generator SCADA data," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    3. Li, Ying & Zhang, Lijie & Liang, Pengfei & Wang, Xiangfeng & Wang, Bin & Xu, Leitao, 2024. "Semi-supervised meta-path space extended graph convolution network for intelligent fault diagnosis of rotating machinery under time-varying speeds," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    4. Shi, Mingkuan & Ding, Chuancang & Wang, Rui & Shen, Changqing & Huang, Weiguo & Zhu, Zhongkui, 2023. "Graph embedding deep broad learning system for data imbalance fault diagnosis of rotating machinery," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    5. Yan, Shen & Zhong, Xiang & Shao, Haidong & Ming, Yuhang & Liu, Chao & Liu, Bin, 2023. "Digital twin-assisted imbalanced fault diagnosis framework using subdomain adaptive mechanism and margin-aware regularization," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    6. Dong, Yutong & Jiang, Hongkai & Yao, Renhe & Mu, Mingzhe & Yang, Qiao, 2024. "Rolling bearing intelligent fault diagnosis towards variable speed and imbalanced samples using multiscale dynamic supervised contrast learning," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    7. Ding, Peng & Zhao, Xiaoli & Shao, Haidong & Jia, Minping, 2023. "Machinery cross domain degradation prognostics considering compound domain shifts," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    8. Yu, Tian & Li, Chaoshun & Huang, Jie & Xiao, Xiangqu & Zhang, Xiaoyuan & Li, Yuhong & Fu, Bitao, 2024. "ReF-DDPM: A novel DDPM-based data augmentation method for imbalanced rolling bearing fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    9. Huang, Yufeng & Tao, Jun & Zhao, Junyi & Sun, Gang & Yin, Kai & Zhai, Junyi, 2023. "Graph structure embedded with physical constraints-based information fusion network for interpretable fault diagnosis of aero-engine," Energy, Elsevier, vol. 283(C).
    10. Wu, Zhangjun & Xu, Renli & Luo, Yuansheng & Shao, Haidong, 2024. "A holistic semi-supervised method for imbalanced fault diagnosis of rotational machinery with out-of-distribution samples," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Zhangjun & Xu, Renli & Luo, Yuansheng & Shao, Haidong, 2024. "A holistic semi-supervised method for imbalanced fault diagnosis of rotational machinery with out-of-distribution samples," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    2. Zhu, Yunyi & Xie, Bin & Wang, Anqi & Qian, Zheng, 2025. "Wind turbine fault detection and identification via self-attention-based dynamic graph representation learning and variable-level normalizing flow," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    3. Chen, Yuejian & Liu, Xuemei & Rao, Meng & Qin, Yong & Wang, Zhipeng & Ji, Yuanjin, 2025. "Explicit speed-integrated LSTM network for non-stationary gearbox vibration representation and fault detection under varying speed conditions," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
    4. Liu, Jie & He, Zihan & Miao, Yonghao, 2024. "Causality-based adversarial attacks for robust GNN modelling with application in fault detection," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    5. Yu, Tian & Li, Chaoshun & Huang, Jie & Xiao, Xiangqu & Zhang, Xiaoyuan & Li, Yuhong & Fu, Bitao, 2024. "ReF-DDPM: A novel DDPM-based data augmentation method for imbalanced rolling bearing fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    6. Mo, Renpeng & Zhou, Han & Yin, Hongpeng & Si, Xiaosheng, 2025. "A survey on few-shot learning for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 257(PB).
    7. Dai, Menghang & Liu, Zhiliang & Wang, Jinrui & Zuo, Mingjian, 2024. "Physics-driven feature alignment combined with dynamic distribution adaptation for three-cylinder drilling pump cross-speed fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    8. Liu, Shen & Chen, Jinglong & Liu, Zijun & Wang, Jun & Wang, Z. Jane, 2025. "Graph embedded patch-sense autoencoder with prior knowledge for multi-component system anomaly detection," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    9. Lei, Zihao & Tian, Feiyu & Su, Yu & Wen, Guangrui & Feng, Ke & Chen, Xuefeng & Beer, Michael & Yang, Chunsheng, 2025. "Unsupervised graph transfer network with hybrid attention mechanism for fault diagnosis under variable operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
    10. Wang, Zisheng & Xuan, Jianping & Shi, Tielin & Li, Yan-Fu, 2025. "Multi-label domain adversarial reinforcement learning for unsupervised compound fault recognition," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).
    11. Huang, Yaodi & Song, Yunpeng & Cai, Zhongmin, 2025. "A supervised contrastive learning method with novel data augmentation for transient stability assessment considering sample imbalance," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    12. Peng, Dandan & Desmet, Wim & Gryllias, Konstantinos, 2025. "Reconstruction-based Deep Unsupervised Adaptive Threshold Support Vector Data Description for wind turbine anomaly detection," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    13. Zhou, Haoxuan & Wang, Bingsen & Zio, Enrico & Lei, Zihao & Wen, Guangrui & Chen, Xuefeng, 2025. "Unsupervised anomaly detection of machines operating under time-varying conditions: DCD-VAE enabled feature disentanglement of operating conditions and states," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    14. Li, Xinyu & Cheng, Changming & Peng, Zhike, 2025. "Label-guided contrastive learning with weighted pseudo-labeling: A novel mechanical fault diagnosis method with insufficient annotated data," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
    15. Xiao, Dasheng & Lin, Zhifu & Yu, Aiyang & Tang, Ke & Xiao, Hong, 2024. "Data-driven method embedded physical knowledge for entire lifecycle degradation monitoring in aircraft engines," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    16. Cui, Wenyue & Wang, Rui & Sun, Tao & Liu, Zezhou, 2024. "Managing remaining useful life of cyber-aeroengine systems using a graph spatio-temporal attention recurrent network with phase-lag index," Energy, Elsevier, vol. 308(C).
    17. Zhu, Dongping & Huang, Xiaogang & Ding, Zhixia & Zhang, Wei, 2024. "Estimation of wind turbine responses with attention-based neural network incorporating environmental uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    18. Fu, Xingchen & Jiao, Keming & Tao, Jianfeng & Liu, Chengliang, 2024. "Multi-stream domain adversarial prototype network for integrated smart roller TBM main bearing fault diagnosis across various low rotating speeds," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    19. Li, Gang & Hu, Jiayao & Ding, Yaping & Tang, Aimin & Ao, Jiaxing & Hu, Dalong & Liu, Yang, 2024. "A novel method for fault diagnosis of fluid end of drilling pump under complex working conditions," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    20. Li, Xueyi & Yu, Tianyu & Zhang, Feibin & Huang, Jinfeng & He, David & Chu, Fulei, 2025. "Mixed style network based: A novel rotating machinery fault diagnosis method through batch spectral penalization," Reliability Engineering and System Safety, Elsevier, vol. 255(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:257:y:2025:i:pb:s0951832025000900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.