IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v240y2023ics095183202300515x.html
   My bibliography  Save this article

Graph embedding deep broad learning system for data imbalance fault diagnosis of rotating machinery

Author

Listed:
  • Shi, Mingkuan
  • Ding, Chuancang
  • Wang, Rui
  • Shen, Changqing
  • Huang, Weiguo
  • Zhu, Zhongkui

Abstract

The distribution of monitored data during the service life of machinery equipment is imbalanced, especially there is more monitoring data for health conditions than for failure conditions. Unfortunately, most existing intelligent fault diagnosis methods are built on the assumption of data balance and cannot effectively handle unbalanced data. Therefore, to solve the above problem, a graph embedding based deep broad learning system (GEDBLS) for data imbalance fault diagnosis of rotating machinery is proposed in this paper. Different from the traditional broad learning system (BLS), the designed GEDBLS not only utilizes the category and structure information of the data in the reconstruction process, but also allows learning the high-level abstract features of the vibration signal through a progressive encoding and decoding mechanism. In addition, GEDBLS considers category weights and intra-class tightness in the classification loss function for imbalanced data category classification. The effectiveness of the presented approach is verified via monitoring data from key equipment of rotating machinery. Experimental results indicate that compared with other methods, the proposed method has stronger ability of feature representation and imbalanced data processing.

Suggested Citation

  • Shi, Mingkuan & Ding, Chuancang & Wang, Rui & Shen, Changqing & Huang, Weiguo & Zhu, Zhongkui, 2023. "Graph embedding deep broad learning system for data imbalance fault diagnosis of rotating machinery," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:reensy:v:240:y:2023:i:c:s095183202300515x
    DOI: 10.1016/j.ress.2023.109601
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183202300515X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109601?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zuo, Lin & Xu, Fengjie & Zhang, Changhua & Xiahou, Tangfan & Liu, Yu, 2022. "A multi-layer spiking neural network-based approach to bearing fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Yunyi & Xie, Bin & Wang, Anqi & Qian, Zheng, 2025. "Wind turbine fault detection and identification via self-attention-based dynamic graph representation learning and variable-level normalizing flow," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    2. Dai, Menghang & Liu, Zhiliang & Wang, Jinrui & Zuo, Mingjian, 2024. "Physics-driven feature alignment combined with dynamic distribution adaptation for three-cylinder drilling pump cross-speed fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    3. Yu, Aobo & Cai, Bolin & Wu, Qiujie & García, Miguel Martínez & Li, Jing & Chen, Xiangcheng, 2024. "Source-free domain adaptation method for fault diagnosis of rotation machinery under partial information," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    4. Miao, Mengqi & Wang, Yun & Yu, Jianbo, 2024. "Temporal self-supervised domain adaptation network for machinery fault diagnosis under multiple non-ideal conditions," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    5. Wei, Yuan & Xiao, Zhijun & Chen, Xiangyan & Gu, Xiaohui & Schröder, Kai-Uwe, 2025. "A bearing fault data augmentation method based on hybrid-diversity loss diffusion model and parameter transfer," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    6. Liu, Jie & He, Zihan & Miao, Yonghao, 2024. "Causality-based adversarial attacks for robust GNN modelling with application in fault detection," Reliability Engineering and System Safety, Elsevier, vol. 252(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jiale & Wang, Huan, 2024. "A brain-inspired energy-efficient Wide Spiking Residual Attention Framework for intelligent fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    2. Tito G. Amaral & Vitor Fernão Pires & Armando Cordeiro & Daniel Foito & João F. Martins & Julia Yamnenko & Tetyana Tereschenko & Liudmyla Laikova & Ihor Fedin, 2023. "Incipient Fault Diagnosis of a Grid-Connected T-Type Multilevel Inverter Using Multilayer Perceptron and Walsh Transform," Energies, MDPI, vol. 16(6), pages 1-18, March.
    3. Shi, Peiming & Wu, Shuping & Xu, Xuefang & Zhang, Bofei & Liang, Pengfei & Qiao, Zijian, 2023. "TSN: A novel intelligent fault diagnosis method for bearing with small samples under variable working conditions," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    4. Wang, Changdong & Tian, Bowen & Yang, Jingli & Jie, Huamin & Chang, Yongqi & Zhao, Zhenyu, 2024. "Neural-transformer: A brain-inspired lightweight mechanical fault diagnosis method under noise," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    5. Liu, Jianing & Cao, Hongrui & Luo, Yang, 2023. "An information-induced fault diagnosis framework generalizing from stationary to unknown nonstationary working conditions," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    6. Wang, Huan & Li, Yan-Fu, 2023. "Bioinspired membrane learnable spiking neural network for autonomous vehicle sensors fault diagnosis under open environments," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    7. Liu, Shaowei & Jiang, Hongkai & Wu, Zhenghong & Yi, Zichun & Wang, Ruixin, 2023. "Intelligent fault diagnosis of rotating machinery using a multi-source domain adaptation network with adversarial discrepancy matching," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    8. Yu, Xiaolei & Zhao, Zhibin & Zhang, Xingwu & Chen, Xuefeng & Cai, Jianbing, 2023. "Statistical identification guided open-set domain adaptation in fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    9. Liu, Jie & Xu, Huoyao & Peng, Xiangyu & Wang, Junlang & He, Chaoming, 2023. "Reliable composite fault diagnosis of hydraulic systems based on linear discriminant analysis and multi-output hybrid kernel extreme learning machine," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    10. Tan, Hongchuang & Xie, Suchao & Ma, Wen & Yang, Chengxing & Zheng, Shiwei, 2023. "Correlation feature distribution matching for fault diagnosis of machines," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    11. Zhang, Wei & Wang, Ziwei & Li, Xiang, 2023. "Blockchain-based decentralized federated transfer learning methodology for collaborative machinery fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    12. Liu, Zhao-Hua & Chen, Liang & Wei, Hua-Liang & Wu, Fa-Ming & Chen, Lei & Chen, Ya-Nan, 2023. "A Tensor-based domain alignment method for intelligent fault diagnosis of rolling bearing in rotating machinery," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    13. Zhu, Hongyan & Shen, Changqing & Li, Lin & Wang, Dong & Huang, Weiguo & Zhu, Zhongkui, 2024. "Reserving embedding space for new fault types: A new continual learning method for bearing fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    14. Li, Yan-Fu & Wang, Huan & Sun, Muxia, 2024. "ChatGPT-like large-scale foundation models for prognostics and health management: A survey and roadmaps," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    15. Pang, Zhendong & Luan, Yingxin & Chen, Jiahong & Li, Teng, 2024. "ParInfoGPT: An LLM-based two-stage framework for reliability assessment of rotating machine under partial information," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    16. Li, Xin & Li, Shuhua & Wei, Dong & Si, Lei & Yu, Kun & Yan, Ke, 2024. "Dynamics simulation-driven fault diagnosis of rolling bearings using security transfer support matrix machine," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    17. Chen, Xu & Zhao, Chunhui & Ding, Jinliang, 2023. "Pyramid-type zero-shot learning model with multi-granularity hierarchical attributes for industrial fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    18. Wang, Fu & Xiahou, Tangfan & Zhang, Xian & He, Pan & Yang, Taibo & Niu, Jiang & Liu, Caixue & Liu, Yu, 2024. "Convolutional preprocessing Transformer-based fault diagnosis for rectifier-filter circuits in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    19. Yin, Zhenqin & Zhuo, Yue & Ge, Zhiqiang, 2023. "Transfer adversarial attacks across industrial intelligent systems," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    20. Chen, Jiayu. & Lin, Cuiyin & Yao, Boqing & Yang, Lechang & Ge, Hongjuan, 2023. "Intelligent fault diagnosis of rolling bearings with low-quality data: A feature significance and diversity learning method," Reliability Engineering and System Safety, Elsevier, vol. 237(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:240:y:2023:i:c:s095183202300515x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.