IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v257y2025ipas095183202500033x.html
   My bibliography  Save this article

A temporal-spatial multi-order weighted graph convolution network with refined feature topology graph for imbalance fault diagnosis of rotating machinery

Author

Listed:
  • Jiang, Zhichao
  • Liu, Dongdong
  • Cui, Lingli

Abstract

In the actual operation, rotating machinery mostly works under normal condition. The collected monitoring data often exhibit serious distribution imbalance with far more normal label samples than fault label samples, leading to poor recognition performance of standard intelligent diagnosis models. Besides, many intelligent diagnosis models rely on data generation to overcome this problem, which is subject to data generation differences. Therefore, to address above limitations, a novel temporal-spatial multi-order weighted graph convolution network (TSMOW-GCN) with refined feature topology graph is proposed. First, a multi-order weight graph convolution layer is proposed to aggregate multi-order weighted mixing neighbor information in different distances, which achieves broader representation and mines more features and relationships without data generation and deep network structure. Further, the feature modeling in temporal dimensions is considered. Second, a refined feature topology graph construction method is developed to obtain compact and efficient feature topology graphs, which can improve the ability of graph representation. Besides, a dynamically adjusted label smoothing regularization loss is proposed to further improve generalization ability and avoid overfitting of the trained model under imbalance data. Two rotating machinery datasets are used to quantitatively verify proposed method, indicating that the TSMOW-GCN outperforms several advanced approaches under various imbalance ratios.

Suggested Citation

  • Jiang, Zhichao & Liu, Dongdong & Cui, Lingli, 2025. "A temporal-spatial multi-order weighted graph convolution network with refined feature topology graph for imbalance fault diagnosis of rotating machinery," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
  • Handle: RePEc:eee:reensy:v:257:y:2025:i:pa:s095183202500033x
    DOI: 10.1016/j.ress.2025.110830
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183202500033X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.110830?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shi, Mingkuan & Ding, Chuancang & Wang, Rui & Shen, Changqing & Huang, Weiguo & Zhu, Zhongkui, 2023. "Graph embedding deep broad learning system for data imbalance fault diagnosis of rotating machinery," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    2. Cui, Lingli & Shen, Qiang & Xiao, Yongchang & Liu, Dongdong & Wang, Huaqing, 2025. "Sparse graph structure fusion convolutional network for machinery remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
    3. Shi, Zunya & Chehade, Abdallah, 2021. "A dual-LSTM framework combining change point detection and remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    4. Chuan Xiang & Zejun Ren & Pengfei Shi & Hongge Zhao & Chun Wei, 2021. "Data-Driven Fault Diagnosis for Rolling Bearing Based on DIT-FFT and XGBoost," Complexity, Hindawi, vol. 2021, pages 1-13, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Yunyi & Xie, Bin & Wang, Anqi & Qian, Zheng, 2025. "Wind turbine fault detection and identification via self-attention-based dynamic graph representation learning and variable-level normalizing flow," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    2. Li, Yuanfu & Chen, Yao & Hu, Zhenchao & Zhang, Huisheng, 2023. "Remaining useful life prediction of aero-engine enabled by fusing knowledge and deep learning models," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    3. Zhang, Jiusi & Jiang, Yuchen & Li, Xiang & Huo, Mingyi & Luo, Hao & Yin, Shen, 2022. "An adaptive remaining useful life prediction approach for single battery with unlabeled small sample data and parameter uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    4. Chang, Yuanhong & Li, Fudong & Chen, Jinglong & Liu, Yulang & Li, Zipeng, 2022. "Efficient temporal flow Transformer accompanied with multi-head probsparse self-attention mechanism for remaining useful life prognostics," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    5. Costa, Nahuel & Sánchez, Luciano, 2022. "Variational encoding approach for interpretable assessment of remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    6. Dai, Menghang & Liu, Zhiliang & Wang, Jinrui & Zuo, Mingjian, 2024. "Physics-driven feature alignment combined with dynamic distribution adaptation for three-cylinder drilling pump cross-speed fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    7. Fu, Song & Lin, Lin & Wang, Yue & Guo, Feng & Zhao, Minghang & Zhong, Baihong & Zhong, Shisheng, 2024. "MCA-DTCN: A novel dual-task temporal convolutional network with multi-channel attention for first prediction time detection and remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    8. Liu, Shen & Chen, Jinglong & Liu, Zijun & Wang, Jun & Wang, Z. Jane, 2025. "Graph embedded patch-sense autoencoder with prior knowledge for multi-component system anomaly detection," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    9. Yunlong Han & Conghui Li & Linfeng Zheng & Gang Lei & Li Li, 2023. "Remaining Useful Life Prediction of Lithium-Ion Batteries by Using a Denoising Transformer-Based Neural Network," Energies, MDPI, vol. 16(17), pages 1-16, August.
    10. Fan, Linchuan & Chai, Yi & Chen, Xiaolong, 2022. "Trend attention fully convolutional network for remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    11. Fallahdizcheh, Amirhossein & Wang, Chao, 2022. "Transfer learning of degradation modeling and prognosis based on multivariate functional analysis with heterogeneous sampling rates," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    12. Liu, Shaoyang & Wei, Jingfeng & Li, Guofa & He, Jialong & Zhang, Baodong & Liu, Bo, 2025. "A two-stage remaining useful life prediction method based on adaptive feature metric and graph spatiotemporal attention rule learning," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    13. Zhao, Dezun & Cai, Wenbin & Cui, Lingli, 2025. "Multi-perception graph convolutional tree-embedded network for aero-engine bearing health monitoring with unbalanced data," Reliability Engineering and System Safety, Elsevier, vol. 257(PB).
    14. Wang, Yuan & Lei, Yaguo & Li, Naipeng & Yan, Tao & Si, Xiaosheng, 2023. "Deep multisource parallel bilinear-fusion network for remaining useful life prediction of machinery," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    15. Moradi, Ramin & Cofre-Martel, Sergio & Lopez Droguett, Enrique & Modarres, Mohammad & Groth, Katrina M., 2022. "Integration of deep learning and Bayesian networks for condition and operation risk monitoring of complex engineering systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    16. Zhang, Jiusi & Jiang, Yuchen & Wu, Shimeng & Li, Xiang & Luo, Hao & Yin, Shen, 2022. "Prediction of remaining useful life based on bidirectional gated recurrent unit with temporal self-attention mechanism," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    17. Meng, Huixing & Geng, Mengyao & Han, Te, 2023. "Long short-term memory network with Bayesian optimization for health prognostics of lithium-ion batteries based on partial incremental capacity analysis," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    18. Shi, Jiayu & Zhong, Jingshu & Zhang, Yuxuan & Xiao, Bin & Xiao, Lei & Zheng, Yu, 2024. "A dual attention LSTM lightweight model based on exponential smoothing for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    19. Panjapornpon, Chanin & Bardeeniz, Santi & Hussain, Mohamed Azlan, 2023. "Deep learning approach for energy efficiency prediction with signal monitoring reliability for a vinyl chloride monomer process," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    20. Chen, Chong & Liu, Ying & Sun, Xianfang & Cairano-Gilfedder, Carla Di & Titmus, Scott, 2021. "An integrated deep learning-based approach for automobile maintenance prediction with GIS data," Reliability Engineering and System Safety, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:257:y:2025:i:pa:s095183202500033x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.