IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v255y2025ics0951832024007488.html
   My bibliography  Save this article

Generalized reassigning transform: Algorithm and applications

Author

Listed:
  • Zhao, Dezun
  • Huang, Xiaofan
  • Wang, Tianyang
  • Cui, Lingli

Abstract

Time-frequency analysis (TFA) has attracted the attention of many scholars and engineers for analyzing nonstationary signals in the field of condition monitoring of rotating machinery. For complex mechanical equipment, measured signals always contain both harmonic and impulsive components, which presents a challenge for current TFA methods. To concurrently characterize harmonic and impulsive components, a novel TFA algorithm, called generalized reassigning transform (GRT) is developed in this paper. First, the time-frequency fusion extraction criterion (TFFEC), which includes time-frequency data fusion (TFDF) and time-frequency data extraction (TFDE), is designed to calculate time-frequency representation (TFR) from short-time Fourier transform (STFT) results under different window sizes, which improves time-frequency resolution and eliminates noise influence. Furthermore, the chirp rate (CR)-based postprocessing strategy is constructed to characterize nonstationary signals with both harmonic-like and impulsive-like components. Specifically, the CR discrimination criterion is introduced to classify the TFFEC result into two distinct types: harmonic-like component and impulsive-like component, and then, the TFR with high energy concentration and strong readability is obtained by advanced postprocessing TFA including the synchro-reassigning transform (SRT) and horizontal reassigning transform (HRT). The effectiveness of the GRT in condition monitoring and fault diagnosis is validated through numerical and experiment verification.

Suggested Citation

  • Zhao, Dezun & Huang, Xiaofan & Wang, Tianyang & Cui, Lingli, 2025. "Generalized reassigning transform: Algorithm and applications," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
  • Handle: RePEc:eee:reensy:v:255:y:2025:i:c:s0951832024007488
    DOI: 10.1016/j.ress.2024.110677
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024007488
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110677?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liang, Pengfei & Tian, Jiaye & Wang, Suiyan & Yuan, Xiaoming, 2024. "Multi-source information joint transfer diagnosis for rolling bearing with unknown faults via wavelet transform and an improved domain adaptation network," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    2. Chaleshtori, Amir Eshaghi & Aghaie, Abdollah, 2024. "A novel bearing fault diagnosis approach using the Gaussian mixture model and the weighted principal component analysis," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    3. Su, Yunsheng & Shi, Luojie & Zhou, Kai & Bai, Guangxing & Wang, Zequn, 2024. "Knowledge-informed deep networks for robust fault diagnosis of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    4. Tang, Shengnan & Zhu, Yong & Yuan, Shouqi, 2022. "Intelligent fault identification of hydraulic pump using deep adaptive normalized CNN and synchrosqueezed wavelet transform," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    5. Wang, Chu & Dou, Manfeng & Li, Zhongliang & Outbib, Rachid & Zhao, Dongdong & Zuo, Jian & Wang, Yuanlin & Liang, Bin & Wang, Peng, 2023. "Data-driven prognostics based on time-frequency analysis and symbolic recurrent neural network for fuel cells under dynamic load," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    6. Liu, Yi & Xiang, Hang & Jiang, Zhansi & Xiang, Jiawei, 2023. "Second-order transient-extracting S transform for fault feature extraction in rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    7. Kumar, Anil & Parkash, Chander & Vashishtha, Govind & Tang, Hesheng & Kundu, Pradeep & Xiang, Jiawei, 2022. "State-space modeling and novel entropy-based health indicator for dynamic degradation monitoring of rolling element bearing," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zhongwei & Jiao, Zonghao & Li, Youjia & Shao, Mingyu & Dai, Xiangjun, 2024. "Intelligent fault diagnosis of bearings driven by double-level data fusion based on multichannel sample fusion and feature fusion under time-varying speed conditions," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    2. Liu, Rui & Ding, Xiaoxi & Liu, Shenglan & Zheng, Hebin & Xu, Yuanyaun & Shao, Yimin, 2025. "Knowledge-informed FIR-based cross-category filtering framework for interpretable machinery fault diagnosis under small samples," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).
    3. Liu, Yi & Xiang, Hang & Jiang, Zhansi & Xiang, Jiawei, 2023. "Second-order transient-extracting S transform for fault feature extraction in rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    4. Liu, Jie & Xu, Huoyao & Peng, Xiangyu & Wang, Junlang & He, Chaoming, 2023. "Reliable composite fault diagnosis of hydraulic systems based on linear discriminant analysis and multi-output hybrid kernel extreme learning machine," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    5. Zhou, Haoxuan & Wang, Bingsen & Zio, Enrico & Wen, Guangrui & Liu, Zimin & Su, Yu & Chen, Xuefeng, 2023. "Hybrid system response model for condition monitoring of bearings under time-varying operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    6. Chao, Qun & Shao, Yuechen & Liu, Chengliang & Yang, Xiaoxue, 2023. "Health evaluation of axial piston pumps based on density weighted support vector data description," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    7. Zhang, Qing & Li, Shaochen & Chin-Hon, Tan & Liu, Xiaofei & Shen, Jingyuan & Shi, Tielin & Xuan, Jianping, 2025. "Fault Impulse Inference and Cyclostationary Approximation: A feature-interpretable intelligent fault detection method for few-shot unsupervised domain adaptation," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    8. Yu, Tian & Li, Chaoshun & Huang, Jie & Xiao, Xiangqu & Zhang, Xiaoyuan & Li, Yuhong & Fu, Bitao, 2024. "ReF-DDPM: A novel DDPM-based data augmentation method for imbalanced rolling bearing fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    9. Dong, Yutong & Jiang, Hongkai & Wu, Zhenghong & Yang, Qiao & Liu, Yunpeng, 2023. "Digital twin-assisted multiscale residual-self-attention feature fusion network for hypersonic flight vehicle fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    10. Zuo, Jian & Cadet, Catherine & Li, Zhongliang & Bérenguer, Christophe & Outbib, Rachid, 2024. "A deterioration-aware energy management strategy for the lifetime improvement of a multi-stack fuel cell system subject to a random dynamic load," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    11. Zhu, Zuanyu & Cheng, Junsheng & Wang, Ping & Wang, Jian & Kang, Xin & Yang, Yu, 2023. "A novel fault diagnosis framework for rotating machinery with hierarchical multiscale symbolic diversity entropy and robust twin hyperdisk-based tensor machine," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    12. Sahebkar Farkhani, Jalal & Çelik, Özgür & Ma, Kaiqi & Bak, Claus Leth & Chen, Zhe, 2024. "A comprehensive review of potential protection methods for VSC multi-terminal HVDC systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    13. Dai, Menghang & Liu, Zhiliang & Wang, Jinrui & Zuo, Mingjian, 2024. "Physics-driven feature alignment combined with dynamic distribution adaptation for three-cylinder drilling pump cross-speed fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    14. Bai, Guo-Peng & Er, Guo-Kang & Iu, Vai Pan, 2024. "A novel stochastic approach to investigate the probabilistic characteristics of the ship roll system with sinusoidal restoring force," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    15. Wang, Zisheng & Xuan, Jianping & Shi, Tielin & Li, Yan-Fu, 2025. "Multi-label domain adversarial reinforcement learning for unsupervised compound fault recognition," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).
    16. Zhe Li & Kexin Liu & Xudong Wang & Xiaofang Yuan & He Xie & Yaonan Wang, 2025. "A signal-to-image fault classification method based on multi-sensor data for robotic grinding monitoring," Journal of Intelligent Manufacturing, Springer, vol. 36(1), pages 537-550, January.
    17. Wang, Lin & Guo, Wannian & Guo, Junyu & Zheng, Shaocong & Wang, Zhiyuan & Kang, Hooi Siang & Li, He, 2025. "An integrated deep learning model for intelligent recognition of long-distance natural gas pipeline features," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
    18. Lu, Feiyu & Tong, Qingbin & Jiang, Xuedong & Feng, Ziwei & Liu, Ruifang & Xu, Jianjun & Huo, Jingyi, 2024. "DPICEN: Deep physical information consistency embedded network for bearing fault diagnosis under unknown domain," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    19. Zhao, Shuaiyu & Duan, Yiling & Roy, Nitin & Zhang, Bin, 2024. "A deep learning methodology based on adaptive multiscale CNN and enhanced highway LSTM for industrial process fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    20. Lulu Yuan & Meiyan Sun & Guangen Yan & Kexin Que & Bangzhui Wang & Sijia Xu & Yi Lian & Zhong Tang, 2025. "Experimental Study on Loosening and Vibration Characteristics of Vibrating Screen Bolts of Combine Harvester," Agriculture, MDPI, vol. 15(7), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:255:y:2025:i:c:s0951832024007488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.