A signal-to-image fault classification method based on multi-sensor data for robotic grinding monitoring
Author
Abstract
Suggested Citation
DOI: 10.1007/s10845-023-02259-1
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Zou, Xinyu & Tao, Laifa & Sun, Lulu & Wang, Chao & Ma, Jian & Lu, Chen, 2023. "A case-learning-based paradigm for quantitative recommendation of fault diagnosis algorithms: A case study of gearbox," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
- GarcÃa Nieto, P.J. & GarcÃa-Gonzalo, E. & Sánchez Lasheras, F. & de Cos Juez, F.J., 2015. "Hybrid PSO–SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 219-231.
- Xin Zhang & Haifeng Wang & Bo Wu & Quan Zhou & Youmin Hu, 2023. "A novel data-driven method based on sample reliability assessment and improved CNN for machinery fault diagnosis with non-ideal data," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2449-2462, June.
- Tang, Shengnan & Zhu, Yong & Yuan, Shouqi, 2022. "Intelligent fault identification of hydraulic pump using deep adaptive normalized CNN and synchrosqueezed wavelet transform," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
- Hasan Tercan & Tobias Meisen, 2022. "Machine learning and deep learning based predictive quality in manufacturing: a systematic review," Journal of Intelligent Manufacturing, Springer, vol. 33(7), pages 1879-1905, October.
- Isaac Kofi Nti & Adebayo Felix Adekoya & Benjamin Asubam Weyori & Owusu Nyarko-Boateng, 2022. "Applications of artificial intelligence in engineering and manufacturing: a systematic review," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1581-1601, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Spyros Theodoropoulos & Dimitrios Dardanis & Georgios Makridis & Patrik Zajec & Jože M. Rožanec & Dimosthenis Kyriazis & Panayiotis Tsanakas, 2025. "Enhancing robustness to novel visual defects through StyleGAN latent space navigation: a manufacturing use case," Journal of Intelligent Manufacturing, Springer, vol. 36(5), pages 3527-3541, June.
- Vincenzo Varriale & Antonello Cammarano & Francesca Michelino & Mauro Caputo, 2025. "Critical analysis of the impact of artificial intelligence integration with cutting-edge technologies for production systems," Journal of Intelligent Manufacturing, Springer, vol. 36(1), pages 61-93, January.
- Guan Wang & Hongwei Xia, 2025. "Event-triggered hierarchical learning control of air-breathing hypersonic vehicles with predefined-time convergence," Journal of Intelligent Manufacturing, Springer, vol. 36(1), pages 595-618, January.
- Dong, Yutong & Jiang, Hongkai & Wu, Zhenghong & Yang, Qiao & Liu, Yunpeng, 2023. "Digital twin-assisted multiscale residual-self-attention feature fusion network for hypersonic flight vehicle fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
- Dai, Menghang & Liu, Zhiliang & Wang, Jinrui & Zuo, Mingjian, 2024. "Physics-driven feature alignment combined with dynamic distribution adaptation for three-cylinder drilling pump cross-speed fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
- Pei Wang & Tao Wang & Sheng Yang & Han Cheng & Pengde Huang & Qianle Zhang, 2024. "Production quality prediction of cross-specification products using dynamic deep transfer learning network," Journal of Intelligent Manufacturing, Springer, vol. 35(6), pages 2567-2592, August.
- Iñigo Flores Ituarte & Suraj Panicker & Hari P. N. Nagarajan & Eric Coatanea & David W. Rosen, 2023. "Optimisation-driven design to explore and exploit the process–structure–property–performance linkages in digital manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 219-241, January.
- Wang, Lin & Guo, Wannian & Guo, Junyu & Zheng, Shaocong & Wang, Zhiyuan & Kang, Hooi Siang & Li, He, 2025. "An integrated deep learning model for intelligent recognition of long-distance natural gas pipeline features," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
- Abhilash Puthanveettil Madathil & Xichun Luo & Qi Liu & Charles Walker & Rajeshkumar Madarkar & Yukui Cai & Zhanqiang Liu & Wenlong Chang & Yi Qin, 2024. "Intrinsic and post-hoc XAI approaches for fingerprint identification and response prediction in smart manufacturing processes," Journal of Intelligent Manufacturing, Springer, vol. 35(8), pages 4159-4180, December.
- Zhao, Shuaiyu & Duan, Yiling & Roy, Nitin & Zhang, Bin, 2024. "A deep learning methodology based on adaptive multiscale CNN and enhanced highway LSTM for industrial process fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
- Zhao, Dezun & Huang, Xiaofan & Wang, Tianyang & Cui, Lingli, 2025. "Generalized reassigning transform: Algorithm and applications," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
- Lulu Yuan & Meiyan Sun & Guangen Yan & Kexin Que & Bangzhui Wang & Sijia Xu & Yi Lian & Zhong Tang, 2025. "Experimental Study on Loosening and Vibration Characteristics of Vibrating Screen Bolts of Combine Harvester," Agriculture, MDPI, vol. 15(7), pages 1-21, March.
- Zhen Zhang & Zenan Yang & Chenchong Wang & Wei Xu, 2024. "Accelerating ultrashort pulse laser micromachining process comprehensive optimization using a machine learning cycle design strategy integrated with a physical model," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 449-465, January.
- Thomas Heitz & Ning He & Addi Ait-Mlouk & Daniel Bachrathy & Ni Chen & Guolong Zhao & Liang Li, 2025. "Investigation on eXtreme Gradient Boosting for cutting force prediction in milling," Journal of Intelligent Manufacturing, Springer, vol. 36(1), pages 285-301, January.
- Zhengyang Fan & Wanru Li & Kuo-Chu Chang, 2023. "A Bidirectional Long Short-Term Memory Autoencoder Transformer for Remaining Useful Life Estimation," Mathematics, MDPI, vol. 11(24), pages 1-17, December.
- Ferreira Neto, Waldomiro Alves & VirgÃnio Cavalcante, Cristiano Alexandre & Do, Phuc, 2024. "Deep reinforcement learning for maintenance optimization of a scrap-based steel production line," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
- Xiao Zhang & Weiguo Huang & Rui Wang & Jun Wang & Changqing Shen, 2025. "Dual prototypical contrastive network: a novel self-supervised method for cross-domain few-shot fault diagnosis," Journal of Intelligent Manufacturing, Springer, vol. 36(1), pages 475-490, January.
- Xu, Dongxin & Pan, Yongjun & Zhang, Xiaoxi & Dai, Wei & Liu, Binghe & Shuai, Qi, 2024. "Data-driven modelling and evaluation of a battery-pack system’s mechanical safety against bottom cone impact," Energy, Elsevier, vol. 290(C).
- Li, Gang & Hu, Jiayao & Ding, Yaping & Tang, Aimin & Ao, Jiaxing & Hu, Dalong & Liu, Yang, 2024. "A novel method for fault diagnosis of fluid end of drilling pump under complex working conditions," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
- Chen, Xirui & Liu, Hui, 2025. "Domain correction for hydraulic internal pump leakage detection considering multiclass aberrant flow data," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:36:y:2025:i:1:d:10.1007_s10845-023-02259-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.