IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v36y2025i5d10.1007_s10845-024-02415-1.html
   My bibliography  Save this article

Enhancing robustness to novel visual defects through StyleGAN latent space navigation: a manufacturing use case

Author

Listed:
  • Spyros Theodoropoulos

    (National Technical University of Athens
    University of Piraeus)

  • Dimitrios Dardanis

    (University of Piraeus)

  • Georgios Makridis

    (University of Piraeus)

  • Patrik Zajec

    (Jožef Stefan Institute)

  • Jože M. Rožanec

    (Jožef Stefan Institute)

  • Dimosthenis Kyriazis

    (University of Piraeus)

  • Panayiotis Tsanakas

    (National Technical University of Athens)

Abstract

Visual Quality Inspection is an integral part of the manufacturing process that is becoming increasingly automated with the advent of Industry 4.0. While very beneficial, AI-driven Computer Vision Algorithms and Deep Neural Networks face several issues that may impede their adoption in practical real-life settings such as a manufacturing shop floor. One such issue arising during an AI classifier’s continuous operation is the frequent lack of robustness to novel defects appearing for the first time. Such unanticipated inputs can pose a significant risk to cyber-physical applications as a resulting out-of-context decision could compromise the integrity of the production process. While recent Machine Learning methods can theoretically tackle this problem from different angles (e.g., open-set recognition, semi-supervised learning, intelligent data augmentation), applying them to a real-life setting with a small, imbalanced dataset and high inter-class similarity can be challenging. This paper confronts such a use case aiming at the automation of the visual quality inspection of shaver shell brand prints from the electronics industry and characterized by data scarcity and the existence of small local defects. To that end, we introduce a novel data augmentation approach based on the latent space manipulation of StyleGAN, where defect data is intentionally synthesized to simulate novel inputs that can help form a boundary of the model’s knowledge. Our approach shows promising results compared to well-established open-set recognition and semi-supervised methods applied to the same problem, while its consistent performance across classifier embeddings indicates lower coupling to the final classifier.

Suggested Citation

  • Spyros Theodoropoulos & Dimitrios Dardanis & Georgios Makridis & Patrik Zajec & Jože M. Rožanec & Dimosthenis Kyriazis & Panayiotis Tsanakas, 2025. "Enhancing robustness to novel visual defects through StyleGAN latent space navigation: a manufacturing use case," Journal of Intelligent Manufacturing, Springer, vol. 36(5), pages 3527-3541, June.
  • Handle: RePEc:spr:joinma:v:36:y:2025:i:5:d:10.1007_s10845-024-02415-1
    DOI: 10.1007/s10845-024-02415-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-024-02415-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-024-02415-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:36:y:2025:i:5:d:10.1007_s10845-024-02415-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.