Mixed style network based: A novel rotating machinery fault diagnosis method through batch spectral penalization
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2024.110667
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Lu, Biliang & Zhang, Yingjie & Liu, Zhaohua & Wei, Hualiang & Sun, Qingshuai, 2023. "A novel sample selection approach based universal unsupervised domain adaptation for fault diagnosis of rotating machinery," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
- Li, Qi & Chen, Liang & Kong, Lin & Wang, Dong & Xia, Min & Shen, Changqing, 2023. "Cross-domain augmentation diagnosis: An adversarial domain-augmented generalization method for fault diagnosis under unseen working conditions," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
- Wu, Zhangjun & Xu, Renli & Luo, Yuansheng & Shao, Haidong, 2024. "A holistic semi-supervised method for imbalanced fault diagnosis of rotational machinery with out-of-distribution samples," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
- Yang, Miaorui & Zhang, Kun & Sheng, Zhipeng & Zhang, Xiangfeng & Xu, Yonggang, 2024. "The amplitude modulation bispectrum: A weak modulation features extracting method for bearing fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Guo, Yu & Li, Xiangyu & Zhang, Jundong & Cheng, Ziyi, 2025. "SDCGAN: A CycleGAN-based single-domain generalization method for mechanical fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 258(C).
- Liu, Yang & Deng, Aidong & Chen, Geng & Shi, Yaowei & Hu, Qinyi, 2025. "Universal domain adaptation in rotating machinery fault diagnosis: A self-supervised orthogonal clustering approach," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
- Wang, Zisheng & Xuan, Jianping & Shi, Tielin & Li, Yan-Fu, 2025. "Multi-label domain adversarial reinforcement learning for unsupervised compound fault recognition," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).
- Zhao, Dezun & Cai, Wenbin & Cui, Lingli, 2025. "Multi-perception graph convolutional tree-embedded network for aero-engine bearing health monitoring with unbalanced data," Reliability Engineering and System Safety, Elsevier, vol. 257(PB).
- Lin, Yanzhuo & Wang, Yu & Zhang, Mingquan & Zhao, Ming, 2025. "A robust source-free unsupervised domain adaptation method based on uncertainty measure and adaptive calibration for rotating machinery fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
- Liu, Jianing & Cao, Hongrui & Luo, Yang, 2023. "An information-induced fault diagnosis framework generalizing from stationary to unknown nonstationary working conditions," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
- Ma, Hongbo & Wei, Jiacheng & Zhang, Guowei & Kong, Xianguang & Du, Jingli, 2024. "Causality-inspired multi-source domain generalization method for intelligent fault diagnosis under unknown operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
- Ma, Yulin & Yang, Jun & Li, Lei, 2023. "Gradient aligned domain generalization with a mutual teaching teacher-student network for intelligent fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
- Zhang, Chen & Bahrami, Mahdi & Mishra, Dhanada K. & Yuen, Matthew M.F. & Yu, Yantao & Zhang, Jize, 2025. "SelectSeg: Uncertainty-based selective training and prediction for accurate crack segmentation under limited data and noisy annotations," Reliability Engineering and System Safety, Elsevier, vol. 259(C).
- Sun, Yongjian & Yu, Gang & Wang, Wei, 2025. "Image texture feature fusion enhancement for bearing fault diagnosis based on maximum gradient," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
- Gao, Lei & Gao, Qinhe & Liu, Zhihao & Cheng, Hongjie & Yao, Jianyong & Zhao, Xiaoli & Jia, Sixiang, 2025. "Multiple classifiers inconsistency-based deep adversarial domain generalization method for cross-condition fault diagnosis in rotating systems," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
- Zhang, Xiao & Huang, Weiguo & Wang, Jun & Zhu, Zhongkui & Shen, Changqing & Chen, Kai & Zhong, Xingli & He, Li, 2025. "Adaptive variational sampling-embedded domain generalization network for fault diagnosis with intra-inter-domain class imbalance," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
- Yu, Aobo & Cai, Bolin & Wu, Qiujie & GarcÃa, Miguel MartÃnez & Li, Jing & Chen, Xiangcheng, 2024. "Source-free domain adaptation method for fault diagnosis of rotation machinery under partial information," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
- Yan, Zhenhao & Zhou, Bingqiang & Gao, Zenggui & Nong, Weiping & Liu, Lilan & Sun, Yanning, 2025. "An improved cross-machine transfer strategy based on multi-source domain knowledge for abnormal sample recognition," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
- Jiang, Ming & Zhou, Kuang & Gao, Jiahui & Zhang, Fode, 2025. "Integrating causal representations with domain adaptation for fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
- Wang, Xiaoyou & Jiao, Jinyang & Zhou, Xiaoqing & Xia, Yong, 2025. "Knowledge distillation-based domain generalization enabling invariant feature distributions for damage detection of rotating machines and structures," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
- Liu, Jie & He, Zihan & Miao, Yonghao, 2024. "Causality-based adversarial attacks for robust GNN modelling with application in fault detection," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
- Guo, Chang & Shang, Zuogang & Ren, Jiaxin & Zhao, Zhibin & Ding, Baoqing & Wang, Shibin & Chen, Xuefeng, 2024. "CIS2N: Causal independence and sparse shift network for rotating machinery fault diagnosis in unseen domains," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
- Huang, Kai & Ren, Zhijun & Zhu, Linbo & Lin, Tantao & Zhu, Yongsheng & Zeng, Li & Wan, Jin, 2025. "A three-stage bearing transfer fault diagnosis method for large domain shift scenarios," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).
- Kim, Gyeongho & Kang, Yun Seok & Yang, Sang Min & Choi, Jae Gyeong & Hwang, Gahyun & Park, Hyung Wook & Lim, Sunghoon, 2025. "Fisher-informed continual learning for remaining useful life prediction of machining tools under varying operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:255:y:2025:i:c:s0951832024007385. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.