Mixed style network based: A novel rotating machinery fault diagnosis method through batch spectral penalization
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2024.110667
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lu, Biliang & Zhang, Yingjie & Liu, Zhaohua & Wei, Hualiang & Sun, Qingshuai, 2023. "A novel sample selection approach based universal unsupervised domain adaptation for fault diagnosis of rotating machinery," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
- Li, Qi & Chen, Liang & Kong, Lin & Wang, Dong & Xia, Min & Shen, Changqing, 2023. "Cross-domain augmentation diagnosis: An adversarial domain-augmented generalization method for fault diagnosis under unseen working conditions," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
- Wu, Zhangjun & Xu, Renli & Luo, Yuansheng & Shao, Haidong, 2024. "A holistic semi-supervised method for imbalanced fault diagnosis of rotational machinery with out-of-distribution samples," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
- Yang, Miaorui & Zhang, Kun & Sheng, Zhipeng & Zhang, Xiangfeng & Xu, Yonggang, 2024. "The amplitude modulation bispectrum: A weak modulation features extracting method for bearing fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Zisheng & Xuan, Jianping & Shi, Tielin & Li, Yan-Fu, 2025. "Multi-label domain adversarial reinforcement learning for unsupervised compound fault recognition," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).
- Lin, Yanzhuo & Wang, Yu & Zhang, Mingquan & Zhao, Ming, 2025. "A robust source-free unsupervised domain adaptation method based on uncertainty measure and adaptive calibration for rotating machinery fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
- Liu, Jianing & Cao, Hongrui & Luo, Yang, 2023. "An information-induced fault diagnosis framework generalizing from stationary to unknown nonstationary working conditions," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
- Ma, Hongbo & Wei, Jiacheng & Zhang, Guowei & Kong, Xianguang & Du, Jingli, 2024. "Causality-inspired multi-source domain generalization method for intelligent fault diagnosis under unknown operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
- Ma, Yulin & Yang, Jun & Li, Lei, 2023. "Gradient aligned domain generalization with a mutual teaching teacher-student network for intelligent fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
- Yu, Aobo & Cai, Bolin & Wu, Qiujie & GarcÃa, Miguel MartÃnez & Li, Jing & Chen, Xiangcheng, 2024. "Source-free domain adaptation method for fault diagnosis of rotation machinery under partial information," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
- Liu, Jie & He, Zihan & Miao, Yonghao, 2024. "Causality-based adversarial attacks for robust GNN modelling with application in fault detection," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
- Guo, Chang & Shang, Zuogang & Ren, Jiaxin & Zhao, Zhibin & Ding, Baoqing & Wang, Shibin & Chen, Xuefeng, 2024. "CIS2N: Causal independence and sparse shift network for rotating machinery fault diagnosis in unseen domains," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
- Huang, Kai & Ren, Zhijun & Zhu, Linbo & Lin, Tantao & Zhu, Yongsheng & Zeng, Li & Wan, Jin, 2025. "A three-stage bearing transfer fault diagnosis method for large domain shift scenarios," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).
- Kim, Gyeongho & Kang, Yun Seok & Yang, Sang Min & Choi, Jae Gyeong & Hwang, Gahyun & Park, Hyung Wook & Lim, Sunghoon, 2025. "Fisher-informed continual learning for remaining useful life prediction of machining tools under varying operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
- Zhu, Hongyan & Shen, Changqing & Li, Lin & Wang, Dong & Huang, Weiguo & Zhu, Zhongkui, 2024. "Reserving embedding space for new fault types: A new continual learning method for bearing fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
- Zhang, Guowei & Kong, Xianguang & Wang, Qibin & Du, Jingli & Wang, Jinrui & Ma, Hongbo, 2024. "Single domain generalization method based on anti-causal learning for rotating machinery fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
- Wang, Weicheng & Li, Chao & Zhang, Zhipeng & Chen, Jinglong & He, Shuilong & Feng, Yong, 2025. "Pseudo-label assisted contrastive learning model for unsupervised open-set domain adaptation in fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).
- Gao, Tianyu & Yang, Jingli & Wang, Wenmin & Fan, Xiaopeng, 2024. "A domain feature decoupling network for rotating machinery fault diagnosis under unseen operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
- Tian, Jilun & Zhang, Jiusi & Jiang, Yuchen & Wu, Shimeng & Luo, Hao & Yin, Shen, 2024. "A novel generalized source-free domain adaptation approach for cross-domain industrial fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
- Xiao, Xiaoqi & Zhang, Jianguo & Xu, Dan, 2025. "Contrastive domain-invariant generalization for remaining useful life prediction under diverse conditions and fault modes," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
- Miao, Mengqi & Wang, Yun & Yu, Jianbo, 2024. "Temporal self-supervised domain adaptation network for machinery fault diagnosis under multiple non-ideal conditions," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
- Wang, Jun & Ren, He & Shen, Changqing & Huang, Weiguo & Zhu, Zhongkui, 2024. "Multi-scale style generative and adversarial contrastive networks for single domain generalization fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
- Su, Zhiheng & Lian, Penglong & Shang, Penghui & Zhang, Jiyang & Xu, Hongbing & Zou, Jianxiao & Fan, Shicai, 2024. "Semi-supervised source-free domain adaptation method via diffusive label propagation for rotating machinery fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
More about this item
Keywords
SE Attention mechanism; Mixed style; Batch spectral penalization; Adversarial domain adaptation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:255:y:2025:i:c:s0951832024007385. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.