IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v259y2025ics0951832025001127.html
   My bibliography  Save this article

SelectSeg: Uncertainty-based selective training and prediction for accurate crack segmentation under limited data and noisy annotations

Author

Listed:
  • Zhang, Chen
  • Bahrami, Mahdi
  • Mishra, Dhanada K.
  • Yuen, Matthew M.F.
  • Yu, Yantao
  • Zhang, Jize

Abstract

The performance of deep learning models in crack segmentation heavily depends on the availability of large-scale, pixel-wise annotated datasets. However, such annotation is costly to acquire, and can be noisy due to the complexity of crack patterns and the subjectivity of human annotators. To obtain accurate crack segmentation models under noisy annotations, we propose SelectSeg – a four-stage uncertainty-based framework. First, we start with training a deep ensemble of segmentation models to capture the crack prediction uncertainties. Secondly, an uncertainty-based filtering mechanism identifies possibly noisy annotations. Thirdly, semi-supervised learning leverages the information from both reliably annotated data (labeled) and unreliably annotated data (unlabeled) to retrain the segmentation model. Finally, a selective prediction mechanism allows the model to abstain from making predictions on challenging cases, enhancing the overall workflow reliability. Experimental results on real-world crack datasets demonstrate that SelectSeg outperforms existing methods in noisy annotation scenarios. Both selective training and prediction bring significant accuracy improvement.

Suggested Citation

  • Zhang, Chen & Bahrami, Mahdi & Mishra, Dhanada K. & Yuen, Matthew M.F. & Yu, Yantao & Zhang, Jize, 2025. "SelectSeg: Uncertainty-based selective training and prediction for accurate crack segmentation under limited data and noisy annotations," Reliability Engineering and System Safety, Elsevier, vol. 259(C).
  • Handle: RePEc:eee:reensy:v:259:y:2025:i:c:s0951832025001127
    DOI: 10.1016/j.ress.2025.110909
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025001127
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.110909?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Yulin & Li, Lei & Yang, Jun, 2022. "Convolutional kernel aggregated domain adaptation for intelligent fault diagnosis with label noise," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    2. Yao, Wen & Zheng, Xiaohu & Zhang, Jun & Wang, Ning & Tang, Guijian, 2023. "Deep adaptive arbitrary polynomial chaos expansion: A mini-data-driven semi-supervised method for uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    3. Gao, Dawei & Huang, Kai & Zhu, Yongsheng & Zhu, Linbo & Yan, Ke & Ren, Zhijun & Guedes Soares, C., 2024. "Semi-supervised small sample fault diagnosis under a wide range of speed variation conditions based on uncertainty analysis," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    4. Listou Ellefsen, André & Bjørlykhaug, Emil & Æsøy, Vilmar & Ushakov, Sergey & Zhang, Houxiang, 2019. "Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 240-251.
    5. Jiang, Wenjun & Zhong, Xi & Zhang, Jize, 2024. "TC-Diffusion: A diffusion-based probabilistic tropical cyclone model with application to typhoon wind hazard assessment," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    6. Wang, Chao & Zhu, Tao & Yang, Bing & Yin, Minxuan & Xiao, Shoune & Yang, Guangwu, 2023. "Remaining useful life prediction framework for crack propagation with a case study of railway heavy duty coupler condition monitoring," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    7. Rathnakumar, Rahul & Pang, Yutian & Liu, Yongming, 2023. "Epistemic and aleatoric uncertainty quantification for crack detection using a Bayesian Boundary Aware Convolutional Network," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    8. Xie, Mingjiang & Wang, Yifei & Zhao, Jianli & Pei, Xianjun & Zhang, Tairui, 2024. "Prediction of pipeline fatigue crack propagation under rockfall impact based on multilayer perceptron," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    9. Deng, Congying & Deng, Zihao & Miao, Jianguo, 2024. "Semi-supervised ensemble fault diagnosis method based on adversarial decoupled auto-encoder with extremely limited labels," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    10. Kay I. Penny, 1996. "Appropriate Critical Values When Testing for a Single Multivariate Outlier by Using the Mahalanobis Distance," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 45(1), pages 73-81, March.
    11. Wu, Zhangjun & Xu, Renli & Luo, Yuansheng & Shao, Haidong, 2024. "A holistic semi-supervised method for imbalanced fault diagnosis of rotational machinery with out-of-distribution samples," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    12. Huang, Keke & Tao, Shijun & Wu, Dehao & Yang, Chunhua & Gui, Weihua, 2024. "Robust condition identification against label noise in industrial processes based on trusted connection dictionary learning," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Haoyu & Li, Chuanjiang & Ding, Peng & Li, Shaobo & Li, Tandong & Liu, Chenyu & Zhang, Xiangjie & Hong, Zejian, 2024. "A novel transformer-based few-shot learning method for intelligent fault diagnosis with noisy labels under varying working conditions," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    2. Wu, Zhangjun & Xu, Renli & Luo, Yuansheng & Shao, Haidong, 2024. "A holistic semi-supervised method for imbalanced fault diagnosis of rotational machinery with out-of-distribution samples," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    3. Liu, Jie & He, Zihan & Miao, Yonghao, 2024. "Causality-based adversarial attacks for robust GNN modelling with application in fault detection," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    4. Du, Zhengyu & Liu, Dongdong & Cui, Lingli, 2025. "Dynamic model-driven dictionary learning-inspired domain adaptation strategy for cross-domain bearing fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 258(C).
    5. Wu, Jinhui & Tao, Yourui & Han, Xu, 2023. "Polynomial chaos expansion approximation for dimension-reduction model-based reliability analysis method and application to industrial robots," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    6. Lin, Yan-Hui & Chang, Liang & Guan, Lu-Xin, 2024. "Enhanced stochastic recurrent hybrid model for RUL Predictions via Semi-supervised learning," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    7. Li, Yuanfu & Chen, Yao & Hu, Zhenchao & Zhang, Huisheng, 2023. "Remaining useful life prediction of aero-engine enabled by fusing knowledge and deep learning models," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    8. Yu, Tian & Li, Chaoshun & Huang, Jie & Xiao, Xiangqu & Zhang, Xiaoyuan & Li, Yuhong & Fu, Bitao, 2024. "ReF-DDPM: A novel DDPM-based data augmentation method for imbalanced rolling bearing fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    9. He, Yu & Ma, Yafei & Huang, Ke & Wang, Lei & Zhang, Jianren, 2024. "Digital twin Bayesian entropy framework for corrosion fatigue life prediction and calibration of bridge suspender," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    10. Kamei, Sayaka & Taghipour, Sharareh, 2023. "A comparison study of centralized and decentralized federated learning approaches utilizing the transformer architecture for estimating remaining useful life," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    11. Costa, Nahuel & Sánchez, Luciano, 2022. "Variational encoding approach for interpretable assessment of remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    12. Li, Naipeng & Gebraeel, Nagi & Lei, Yaguo & Fang, Xiaolei & Cai, Xiao & Yan, Tao, 2021. "Remaining useful life prediction based on a multi-sensor data fusion model," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    13. Zheng, Xiaohu & Yao, Wen & Xu, Yingchun & Wang, Ning, 2024. "Algorithms for Bayesian network modeling and reliability inference of complex multistate systems with common cause failure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    14. repec:plo:pone00:0222720 is not listed on IDEAS
    15. Gökhan Akıncı & Lutfihak Alpkan & Bora Yıldız & Gaye Karacay, 2022. "The Link between Ambidextrous Leadership and Innovative Work Behavior in a Military Organization: The Moderating Role of Climate for Innovation," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
    16. Zhang, Wei & Li, Xiang & Ma, Hui & Luo, Zhong & Li, Xu, 2021. "Transfer learning using deep representation regularization in remaining useful life prediction across operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    17. Xie, Mingjiang & Wang, Yifei & Zhao, Jianli & Pei, Xianjun & Zhang, Tairui, 2024. "Prediction of pipeline fatigue crack propagation under rockfall impact based on multilayer perceptron," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    18. Marta Kowal & Piotr Sorokowski, 2022. "Sex Differences in Physical Attractiveness Investments: Overlooked Side of Masculinity," IJERPH, MDPI, vol. 19(7), pages 1-9, March.
    19. Wang, Zisheng & Xuan, Jianping & Shi, Tielin & Li, Yan-Fu, 2025. "Multi-label domain adversarial reinforcement learning for unsupervised compound fault recognition," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).
    20. Zhao, Dezun & Cai, Wenbin & Cui, Lingli, 2025. "Multi-perception graph convolutional tree-embedded network for aero-engine bearing health monitoring with unbalanced data," Reliability Engineering and System Safety, Elsevier, vol. 257(PB).
    21. Cheng, Yongbo & Qv, Junheng & Feng, Ke & Han, Te, 2024. "A Bayesian adversarial probsparse Transformer model for long-term remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 248(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:259:y:2025:i:c:s0951832025001127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.