IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v259y2025ics0951832025001127.html
   My bibliography  Save this article

SelectSeg: Uncertainty-based selective training and prediction for accurate crack segmentation under limited data and noisy annotations

Author

Listed:
  • Zhang, Chen
  • Bahrami, Mahdi
  • Mishra, Dhanada K.
  • Yuen, Matthew M.F.
  • Yu, Yantao
  • Zhang, Jize

Abstract

The performance of deep learning models in crack segmentation heavily depends on the availability of large-scale, pixel-wise annotated datasets. However, such annotation is costly to acquire, and can be noisy due to the complexity of crack patterns and the subjectivity of human annotators. To obtain accurate crack segmentation models under noisy annotations, we propose SelectSeg – a four-stage uncertainty-based framework. First, we start with training a deep ensemble of segmentation models to capture the crack prediction uncertainties. Secondly, an uncertainty-based filtering mechanism identifies possibly noisy annotations. Thirdly, semi-supervised learning leverages the information from both reliably annotated data (labeled) and unreliably annotated data (unlabeled) to retrain the segmentation model. Finally, a selective prediction mechanism allows the model to abstain from making predictions on challenging cases, enhancing the overall workflow reliability. Experimental results on real-world crack datasets demonstrate that SelectSeg outperforms existing methods in noisy annotation scenarios. Both selective training and prediction bring significant accuracy improvement.

Suggested Citation

  • Zhang, Chen & Bahrami, Mahdi & Mishra, Dhanada K. & Yuen, Matthew M.F. & Yu, Yantao & Zhang, Jize, 2025. "SelectSeg: Uncertainty-based selective training and prediction for accurate crack segmentation under limited data and noisy annotations," Reliability Engineering and System Safety, Elsevier, vol. 259(C).
  • Handle: RePEc:eee:reensy:v:259:y:2025:i:c:s0951832025001127
    DOI: 10.1016/j.ress.2025.110909
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025001127
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.110909?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:259:y:2025:i:c:s0951832025001127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.