Generalization analysis and improvement of CNN-based nuclear power plant fault diagnosis model under varying power levels
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.128905
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Li, Jiangkuan & Lin, Meng & Li, Yankai & Wang, Xu, 2022. "Transfer learning network for nuclear power plant fault diagnosis with unlabeled data under varying operating conditions," Energy, Elsevier, vol. 254(PB).
- Yao, Lei & Fang, Zhanpeng & Xiao, Yanqiu & Hou, Junjian & Fu, Zhijun, 2021. "An Intelligent Fault Diagnosis Method for Lithium Battery Systems Based on Grid Search Support Vector Machine," Energy, Elsevier, vol. 214(C).
- Kara Mostefa Khelil, Chérifa & Amrouche, Badia & Benyoucef, Abou soufiane & Kara, Kamel & Chouder, Aissa, 2020. "New Intelligent Fault Diagnosis (IFD) approach for grid-connected photovoltaic systems," Energy, Elsevier, vol. 211(C).
- Park, Yeseul & Choi, Minsung & Choi, Gyungmin, 2022. "Fault detection of industrial large-scale gas turbine for fuel distribution characteristics in start-up procedure using artificial neural network method," Energy, Elsevier, vol. 251(C).
- Wang, Pengfei & Zhang, Jiaxuan & Wan, Jiashuang & Wu, Shifa, 2022. "A fault diagnosis method for small pressurized water reactors based on long short-term memory networks," Energy, Elsevier, vol. 239(PC).
- Kapucu, Ceyhun & Cubukcu, Mete, 2021. "A supervised ensemble learning method for fault diagnosis in photovoltaic strings," Energy, Elsevier, vol. 227(C).
- Hassan, Syed Tauseef & Khan, Danish & Zhu, Bangzhu & Batool, Bushra, 2022. "Is public service transportation increase environmental contamination in China? The role of nuclear energy consumption and technological change," Energy, Elsevier, vol. 238(PC).
- Zhou, Dengji & Yao, Qinbo & Wu, Hang & Ma, Shixi & Zhang, Huisheng, 2020. "Fault diagnosis of gas turbine based on partly interpretable convolutional neural networks," Energy, Elsevier, vol. 200(C).
- Jiang, Lulu & Deng, Zhongwei & Tang, Xiaolin & Hu, Lin & Lin, Xianke & Hu, Xiaosong, 2021. "Data-driven fault diagnosis and thermal runaway warning for battery packs using real-world vehicle data," Energy, Elsevier, vol. 234(C).
- Hassan, Syed Tauseef & Batool, Bushra & Wang, Ping & Zhu, Bangzhu & Sadiq, Muhammad, 2023. "Impact of economic complexity index, globalization, and nuclear energy consumption on ecological footprint: First insights in OECD context," Energy, Elsevier, vol. 263(PA).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jiang, Dingyu & Wu, Hexin & Gou, Junli & Zhang, Bo & Shan, Jianqiang, 2025. "Performance analysis and improvement of data-driven fault diagnosis models under domain discrepancy base on a small modular reactor," Energy, Elsevier, vol. 316(C).
- Yang, Kuang & Liao, Haifan & Xu, Bo & Chen, Qiuxiang & Hou, Zhenghui & Wang, Haijun, 2024. "Data-driven dryout prediction in helical-coiled once-through steam generator: A physics-informed approach leveraging the Buckingham Pi theorem," Energy, Elsevier, vol. 294(C).
- Chenhao, Sun & Yaoding, Wang & Xiangjun, Zeng & Wen, Wang & Chun, Chen & Yang, Shen & Zhijie, Lian & Quan, Zhou, 2024. "A hybrid spatiotemporal distribution forecast methodology for IES vulnerabilities under uncertain and imprecise space-air-ground monitoring data scenarios," Applied Energy, Elsevier, vol. 373(C).
- Furlong, Aidan & Alsafadi, Farah & Palmtag, Scott & Godfrey, Andrew & Wu, Xu, 2025. "Data-driven prediction and uncertainty quantification of PWR crud-induced power shift using convolutional neural networks," Energy, Elsevier, vol. 316(C).
- Wang, Haotong & Li, Yanjun & Lin, Chaojing & Yang, Siyuan & Li, Guolong & Sun, Shengdi & Tian, Ye & Shi, Jianxin, 2024. "Research on condition assessment of nuclear power systems based on fault severity and fault harmfulness," Energy, Elsevier, vol. 311(C).
- Cheng, Wei & Ahmad, Hassaan & Gao, Lin & Xing, Ji & Nie, Zelin & Chen, Xuefeng & Xu, Zhao & Zhang, Rongyong, 2025. "Diagnostics and Prognostics in Power Plants: A systematic review," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
- Huang, Weiping & Das, Ghansham & Dilanchiev, Azer & Giyasova, Zeynab & Gu, Mangi, 2024. "Role of multiple energy sources under carbon neturality goals, income and energy consumption in transition economies: A joint case study between China and Uzbekistan," Energy, Elsevier, vol. 309(C).
- Li, Jiangkuan & Lin, Meng & Wang, Bo & Tian, Ruifeng & Tan, Sichao & Li, Yankai & Chen, Junjie, 2024. "Open set recognition fault diagnosis framework based on convolutional prototype learning network for nuclear power plants," Energy, Elsevier, vol. 290(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Jiangkuan & Lin, Meng & Wang, Bo & Tian, Ruifeng & Tan, Sichao & Li, Yankai & Chen, Junjie, 2024. "Open set recognition fault diagnosis framework based on convolutional prototype learning network for nuclear power plants," Energy, Elsevier, vol. 290(C).
- Li, Jiangkuan & Lin, Meng & Li, Yankai & Wang, Xu, 2022. "Transfer learning network for nuclear power plant fault diagnosis with unlabeled data under varying operating conditions," Energy, Elsevier, vol. 254(PB).
- Jiang, Dingyu & Wu, Hexin & Gou, Junli & Zhang, Bo & Shan, Jianqiang, 2025. "Performance analysis and improvement of data-driven fault diagnosis models under domain discrepancy base on a small modular reactor," Energy, Elsevier, vol. 316(C).
- Yang, Kuang & Liao, Haifan & Xu, Bo & Chen, Qiuxiang & Hou, Zhenghui & Wang, Haijun, 2024. "Data-driven dryout prediction in helical-coiled once-through steam generator: A physics-informed approach leveraging the Buckingham Pi theorem," Energy, Elsevier, vol. 294(C).
- Luo, Run & Li, Yadong & Guo, Huiyu & Wang, Qi & Wang, Xiaolie, 2024. "Cross-operating-condition fault diagnosis of a small module reactor based on CNN-LSTM transfer learning with limited data," Energy, Elsevier, vol. 313(C).
- Huang, Yufeng & Tao, Jun & Zhao, Junyi & Sun, Gang & Yin, Kai & Zhai, Junyi, 2023. "Graph structure embedded with physical constraints-based information fusion network for interpretable fault diagnosis of aero-engine," Energy, Elsevier, vol. 283(C).
- Hu, Dunan & Huang, Sheng & Wen, Zhen & Gu, Xiuquan & Lu, Jianguo, 2024. "A review on thermal runaway warning technology for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 206(C).
- Chang, Chun & Wang, Qiyue & Jiang, Jiuchun & Jiang, Yan & Wu, Tiezhou, 2023. "Voltage fault diagnosis of a power battery based on wavelet time-frequency diagram," Energy, Elsevier, vol. 278(PB).
- Shen, Dongxu & Lyu, Chao & Yang, Dazhi & Hinds, Gareth & Wang, Lixin, 2023. "Connection fault diagnosis for lithium-ion battery packs in electric vehicles based on mechanical vibration signals and broad belief network," Energy, Elsevier, vol. 274(C).
- Sinha, Aparna & Das, Debanjan & Palavalasa, Suneel Kumar, 2023. "dClink: A data-driven based clinkering prediction framework with automatic feature selection capability in 500 MW coal-fired boilers," Energy, Elsevier, vol. 276(C).
- Attallah, Omneya & Ibrahim, Rania A. & Zakzouk, Nahla E., 2023. "CAD system for inter-turn fault diagnosis of offshore wind turbines via multi-CNNs & feature selection," Renewable Energy, Elsevier, vol. 203(C), pages 870-880.
- Zhao, Hongqian & Chen, Zheng & Shu, Xing & Shen, Jiangwei & Liu, Yonggang & Zhang, Yuanjian, 2023. "Multi-step ahead voltage prediction and voltage fault diagnosis based on gated recurrent unit neural network and incremental training," Energy, Elsevier, vol. 266(C).
- Jinrui Nan & Bo Deng & Wanke Cao & Jianjun Hu & Yuhua Chang & Yili Cai & Zhiwei Zhong, 2022. "Big Data-Based Early Fault Warning of Batteries Combining Short-Text Mining and Grey Correlation," Energies, MDPI, vol. 15(15), pages 1-19, July.
- Ren, Song & Sun, Jing, 2024. "Multi-fault diagnosis strategy based on a non-redundant interleaved measurement circuit and improved fuzzy entropy for the battery system," Energy, Elsevier, vol. 292(C).
- Wang, Pengfei & Zhang, Jiaxuan & Wan, Jiashuang & Wu, Shifa, 2022. "A fault diagnosis method for small pressurized water reactors based on long short-term memory networks," Energy, Elsevier, vol. 239(PC).
- Wang, Shuhui & Wang, Zhenpo & Cheng, Ximing & Zhang, Zhaosheng, 2023. "A double-layer fault diagnosis strategy for electric vehicle batteries based on Gaussian mixture model," Energy, Elsevier, vol. 281(C).
- Raihan, Asif & Pavel, Monirul Islam & Muhtasim, Dewan Ahmed & Farhana, Sadia & Faruk, Omar & Paul, Arindrajit, 2023. "The role of renewable energy use, technological innovation, and forest cover toward green development: Evidence from Indonesia," Innovation and Green Development, Elsevier, vol. 2(1).
- Danish & Adnan Khan, 2025. "Will artificial intelligence accelerate or delay the race between nuclear energy technology budgeting and net-zero emissions?," Papers 2501.17410, arXiv.org.
- Liu, Qiquan & Ma, Jian & Zhao, Xuan & Zhang, Kai & Xiangli, Kang & Meng, Dean, 2024. "A novel method for fault diagnosis and type identification of cell voltage inconsistency in electric vehicles using weighted Euclidean distance evaluation and statistical analysis," Energy, Elsevier, vol. 293(C).
- Li, Guannan & Chen, Liang & Liu, Jiangyan & Fang, Xi, 2023. "Comparative study on deep transfer learning strategies for cross-system and cross-operation-condition building energy systems fault diagnosis," Energy, Elsevier, vol. 263(PD).
More about this item
Keywords
Fault diagnosis; Nuclear power plants; Generalization; Domain discrepancy;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223022995. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.