IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v316y2025ics0360544225000891.html
   My bibliography  Save this article

Data-driven prediction and uncertainty quantification of PWR crud-induced power shift using convolutional neural networks

Author

Listed:
  • Furlong, Aidan
  • Alsafadi, Farah
  • Palmtag, Scott
  • Godfrey, Andrew
  • Wu, Xu

Abstract

The development of Crud-Induced Power Shift (CIPS) is an operational challenge in Pressurized Water Reactors that is due to the development of crud on the fuel rod cladding. The available predictive tools developed previously, usually based on fundamental physics, are computationally expensive and have shown differing degrees of accuracy. This work proposes a completely “top-down” approach to predict CIPS instances on an assembly level with reactor-specific calibration built-in. Built using artificial neural networks, this work uses a three-dimensional convolutional approach to leverage the image-like layout of the input data. As a classifier, the convolutional neural network model predicts whether a given assembly will experience CIPS as well as the time of occurrence during a given cycle. This surrogate model is both trained and tested using a combination of calculated core model parameters and measured plant data from Unit 1 of the Catawba Nuclear Station. After the evaluation of its performance using various metrics, Monte Carlo dropout is employed for extensive uncertainty quantification of the model predictions. The results indicate that this methodology could be a viable approach in predicting CIPS with an assembly-level resolution across both clean and afflicted cycles, while using limited computational resources.

Suggested Citation

  • Furlong, Aidan & Alsafadi, Farah & Palmtag, Scott & Godfrey, Andrew & Wu, Xu, 2025. "Data-driven prediction and uncertainty quantification of PWR crud-induced power shift using convolutional neural networks," Energy, Elsevier, vol. 316(C).
  • Handle: RePEc:eee:energy:v:316:y:2025:i:c:s0360544225000891
    DOI: 10.1016/j.energy.2025.134447
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225000891
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134447?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Zhiwei & Zhao, Weicheng & Lin, Xiaoyong & Han, Yongming & Hu, Xuan & Yuan, Kui & Geng, Zhiqiang, 2024. "Load prediction of integrated energy systems for energy saving and carbon emission based on novel multi-scale fusion convolutional neural network," Energy, Elsevier, vol. 290(C).
    2. Lin, Meng & Li, Jiangkuan & Li, Yankai & Wang, Xu & Jin, Chengyi & Chen, Junjie, 2023. "Generalization analysis and improvement of CNN-based nuclear power plant fault diagnosis model under varying power levels," Energy, Elsevier, vol. 282(C).
    3. Stefenon, Stefano Frizzo & Seman, Laio Oriel & da Silva, Evandro Cardozo & Finardi, Erlon Cristian & Coelho, Leandro dos Santos & Mariani, Viviana Cocco, 2024. "Hypertuned wavelet convolutional neural network with long short-term memory for time series forecasting in hydroelectric power plants," Energy, Elsevier, vol. 313(C).
    4. Xu, Huifeng & Hu, Feihu & Liang, Xinhao & Zhao, Guoqing & Abugunmi, Mohammad, 2024. "A framework for electricity load forecasting based on attention mechanism time series depthwise separable convolutional neural network," Energy, Elsevier, vol. 299(C).
    5. Li, Jiangkuan & Lin, Meng & Wang, Bo & Tian, Ruifeng & Tan, Sichao & Li, Yankai & Chen, Junjie, 2024. "Open set recognition fault diagnosis framework based on convolutional prototype learning network for nuclear power plants," Energy, Elsevier, vol. 290(C).
    6. Luo, Run & Li, Yadong & Guo, Huiyu & Wang, Qi & Wang, Xiaolie, 2024. "Cross-operating-condition fault diagnosis of a small module reactor based on CNN-LSTM transfer learning with limited data," Energy, Elsevier, vol. 313(C).
    7. Anne-Laure Boulesteix, 2015. "Ten Simple Rules for Reducing Overoptimistic Reporting in Methodological Computational Research," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-6, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Dingyu & Wu, Hexin & Gou, Junli & Zhang, Bo & Shan, Jianqiang, 2025. "Performance analysis and improvement of data-driven fault diagnosis models under domain discrepancy base on a small modular reactor," Energy, Elsevier, vol. 316(C).
    2. Maximilian M Mandl & Sabine Hoffmann & Sebastian Bieringer & Anna E Jacob & Marie Kraft & Simon Lemster & Anne-Laure Boulesteix, 2024. "Raising awareness of uncertain choices in empirical data analysis: A teaching concept toward replicable research practices," PLOS Computational Biology, Public Library of Science, vol. 20(3), pages 1-10, March.
    3. Yang, Kuang & Liao, Haifan & Xu, Bo & Chen, Qiuxiang & Hou, Zhenghui & Wang, Haijun, 2024. "Data-driven dryout prediction in helical-coiled once-through steam generator: A physics-informed approach leveraging the Buckingham Pi theorem," Energy, Elsevier, vol. 294(C).
    4. Yin, Linfei & Ge, Wei, 2024. "Mobileception-ResNet for transient stability prediction of novel power systems," Energy, Elsevier, vol. 309(C).
    5. Wang, Haotong & Li, Yanjun & Lin, Chaojing & Yang, Siyuan & Li, Guolong & Sun, Shengdi & Tian, Ye & Shi, Jianxin, 2024. "Research on condition assessment of nuclear power systems based on fault severity and fault harmfulness," Energy, Elsevier, vol. 311(C).
    6. Chin, Min Yee & Qin, Yuting & Hoy, Zheng Xuan & Farooque, Aitazaz Ahsan & Wong, Keng Yinn & Mong, Guo Ren & Tan, Jian Ping & Woon, Kok Sin, 2024. "Assessing carbon budgets and reduction pathways in different income levels with neural network forecasting," Energy, Elsevier, vol. 305(C).
    7. Zhou, Shiqi & Lin, Meng & Huang, Shilong & Xiao, Kai, 2024. "Open set compound fault recognition method for nuclear power plant based on label mask weighted prototype learning," Applied Energy, Elsevier, vol. 369(C).
    8. Li, Jiangkuan & Lin, Meng & Wang, Bo & Tian, Ruifeng & Tan, Sichao & Li, Yankai & Chen, Junjie, 2024. "Open set recognition fault diagnosis framework based on convolutional prototype learning network for nuclear power plants," Energy, Elsevier, vol. 290(C).
    9. Han, Yongming & Li, Zhiyi & Wei, Tingting & Zuo, Xiaoyu & Liu, Min & Ma, Bo & Geng, Zhiqiang, 2024. "Production capacity prediction based response conditions optimization of straw reforming using attention-enhanced convolutional LSTM integrating data expansion," Applied Energy, Elsevier, vol. 365(C).
    10. Chenhao, Sun & Yaoding, Wang & Xiangjun, Zeng & Wen, Wang & Chun, Chen & Yang, Shen & Zhijie, Lian & Quan, Zhou, 2024. "A hybrid spatiotemporal distribution forecast methodology for IES vulnerabilities under uncertain and imprecise space-air-ground monitoring data scenarios," Applied Energy, Elsevier, vol. 373(C).
    11. Liao, Chengchen & Tan, Mao & Li, Kang & Chen, Jie & Wang, Rui & Su, Yongxin, 2024. "Sequence signal prediction and reconstruction for multi-energy load forecasting in integrated energy systems: A bi-level multi-task learning method," Energy, Elsevier, vol. 313(C).
    12. Qingzhen Hou & Katharina Waury & Dea Gogishvili & K Anton Feenstra, 2022. "Ten quick tips for sequence-based prediction of protein properties using machine learning," PLOS Computational Biology, Public Library of Science, vol. 18(12), pages 1-15, December.
    13. Christian Hennig, 2022. "An empirical comparison and characterisation of nine popular clustering methods," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(1), pages 201-229, March.
    14. Dongyan Fan & Sicen Lai & Hai Sun & Yuqing Yang & Can Yang & Nianyang Fan & Minhui Wang, 2025. "Review of Machine Learning Methods for Steady State Capacity and Transient Production Forecasting in Oil and Gas Reservoir," Energies, MDPI, vol. 18(4), pages 1-25, February.
    15. Silke Janitza & Ender Celik & Anne-Laure Boulesteix, 2018. "A computationally fast variable importance test for random forests for high-dimensional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(4), pages 885-915, December.
    16. Xuezhao Zhang & Zijie Chen & Wenxiao Wang & Xiaofen Fang, 2024. "Prediction Method of PHEV Driving Energy Consumption Based on the Optimized CNN BiLSTM Attention Network," Energies, MDPI, vol. 17(12), pages 1-21, June.
    17. Theresa Ullmann & Anna Beer & Maximilian Hünemörder & Thomas Seidl & Anne-Laure Boulesteix, 2023. "Over-optimistic evaluation and reporting of novel cluster algorithms: an illustrative study," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(1), pages 211-238, March.
    18. Yu, Ziling & Wang, Zhe & Ma, Mengjuan & Ma, Lili, 2024. "The impact of carbon leakage from energy-saving targets: A moderating effect based on new-energy model cities," Applied Energy, Elsevier, vol. 375(C).
    19. Cheng, Wei & Ahmad, Hassaan & Gao, Lin & Xing, Ji & Nie, Zelin & Chen, Xuefeng & Xu, Zhao & Zhang, Rongyong, 2025. "Diagnostics and Prognostics in Power Plants: A systematic review," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
    20. Huang, Weiping & Das, Ghansham & Dilanchiev, Azer & Giyasova, Zeynab & Gu, Mangi, 2024. "Role of multiple energy sources under carbon neturality goals, income and energy consumption in transition economies: A joint case study between China and Uzbekistan," Energy, Elsevier, vol. 309(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:316:y:2025:i:c:s0360544225000891. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.